Quantum Interference Enhancement of the Spin-Dependent Thermoelectric Response

被引:2
作者
Bennett, Runa X. [1 ]
Hendrickson, Joshua R. [2 ]
Bergfield, Justin P. [1 ,3 ]
机构
[1] Illinois State Univ, Dept Phys, Normal, IL 61790 USA
[2] Air Force Res Lab, Sensors Directorate, Dayton, OH 45433 USA
[3] Illinois State Univ, Dept Chem, Normal, IL 61790 USA
基金
美国国家科学基金会;
关键词
quantum spin-thermopower; coherent transport; quantum interference; many-body transport theory; nonequilibrium Green's functions; single-moleculejunction; SINGLE-MOLECULE JUNCTIONS; ELECTRON-TRANSPORT; CHARGE-TRANSPORT; ORBITAL THEORY; HEAT; TRANSMISSION; THERMOPOWER; SIGNATURES; MODEL; MAGNETORESISTANCE;
D O I
10.1021/acsnano.4c01297
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigate the influence of quantum interference (QI) and broken spin-symmetry on the thermoelectric response of node-possessing junctions, finding a dramatic enhancement of the spin-thermopower (S- s), figure-of-merit (Z( s) T), and maximum thermodynamic efficiency (eta s max) caused by destructive QI. Using many-body and single-particle methods, we calculate the response of 1,3-benzenedithiol and cross-conjugated molecule-based junctions subject to an applied magnetic field, finding nearly universal behavior over a range of junction parameters with S- s, Z( s) T, and reaching peak values of 2 pi root 3 ( k / e ) , 1.51, and 28% of Carnot efficiency, respectively. We also find that the quantum-enhanced spin-response is spectrally broad, and the field required to achieve peak efficiency scales with temperature. The influence of off-resonant thermal channels (e.g., phonon heat transport) on this effect is also investigated.
引用
收藏
页码:11876 / 11885
页数:10
相关论文
共 99 条
[41]   Thermoelectric effects in strongly interacting quantum dot coupled to ferromagnetic leads [J].
Krawiec, M ;
Wysokinski, KI .
PHYSICAL REVIEW B, 2006, 73 (07)
[42]   Basic concepts of quantum interference and electron transport in single-molecule electronics [J].
Lambert, C. J. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (04) :875-888
[43]   Mechanical Tuning of Thermal Transport in a Molecular Junction [J].
Li, Qian ;
Duchemin, Ivan ;
Xiong, Shiyun ;
Solomon, Gemma C. ;
Donadio, Davide .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (43) :24636-24642
[44]   Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport [J].
Li, Yueqi ;
Buerkle, Marius ;
Li, Guangfeng ;
Rostamian, Ali ;
Wang, Hui ;
Wang, Zixiao ;
Bowler, David R. ;
Miyazaki, Tsuyoshi ;
Xiang, Limin ;
Asai, Yoshihiro ;
Zhou, Gang ;
Tao, Nongjian .
NATURE MATERIALS, 2019, 18 (04) :357-+
[45]   Quantum Interference Effects in Charge Transport through Single-Molecule Junctions: Detection, Manipulation, and Application [J].
Liu, Junyang ;
Huang, Xiaoyan ;
Wang, Fei ;
Hong, Wenjing .
ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (01) :151-160
[46]   On the Mott formula for the thermopower of non-interacting electrons in quantum point contacts [J].
Lunde, AM ;
Flensberg, K .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (25) :3879-3884
[47]  
Luo B, 2014, SCI REP-UK, V4, DOI [10.1038/srep04128, 10.1177/2158244014562391]
[48]   Spin Seebeck effect of correlated magnetic molecules [J].
Manaparambil, Anand ;
Weymann, Ireneusz .
SCIENTIFIC REPORTS, 2021, 11 (01)
[49]   Phonon interference effects in molecular junctions [J].
Markussen, Troels .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (24)
[50]   Graphical prediction of quantum interference-induced transmission nodes in functionalized organic molecules [J].
Markussen, Troels ;
Stadler, Robert ;
Thygesen, Kristian S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (32) :14311-14317