Accurate Free Energies of Aqueous Electrolyte Solutions from Molecular Simulations with Non-polarizable Force Fields

被引:3
|
作者
Habibi, Parsa [1 ,2 ]
Polat, H. Mert [1 ]
Blazquez, Samuel [3 ]
Vega, Carlos [3 ]
Dey, Poulumi [2 ]
Vlugt, Thijs J. H. [1 ]
Moultos, Othonas A. [1 ]
机构
[1] Delft Univ Technol, Fac Mech Engn, Engn Thermodynam Proc & Energy Dept, NL-2628 CB Delft, Netherlands
[2] Delft Univ Technol, Fac Mech Engn, Dept Mat Sci & Engn, NL-2628 CD Delft, Netherlands
[3] Univ Complutense Madrid, Fac Ciencias Quim, Dept Quim Fis, Madrid 28040, Spain
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 16期
关键词
THERMODYNAMIC PROPERTIES; TRANSPORT-PROPERTIES; MONTE-CARLO; WATER; MODEL; HYDRATION; HYDROGEN; IONS; COEFFICIENTS; SOLUBILITY;
D O I
10.1021/acs.jpclett.4c00428
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Non-polarizable force fields fail to accurately predict free energies of aqueous electrolytes without compromising the predictive ability for densities and transport properties. A new approach is presented in which (1) TIP4P/2005 water and scaled charge force fields are used to describe the interactions in the liquid phase and (2) an additional Effective Charge Surface (ECS) is used to compute free energies at zero additional computational expense. The ECS is obtained using a single temperature-independent charge scaling parameter per species. Thereby, the chemical potential of water and the free energies of hydration of various aqueous salts (e.g., NaCl and LiCl) are accurately described (deviations less than 5% from experiments), in sharp contrast to calculations where the ECS is omitted (deviations larger than 20%). This approach enables accurate predictions of free energies of aqueous electrolyte solutions using non-polarizable force fields, without compromising liquid-phase properties.
引用
收藏
页码:4477 / 4485
页数:9
相关论文
共 50 条
  • [1] Folding free energy landscapes of β-sheets with non-polarizable and polarizable CHARMM force fields
    Hazel, Anthony J.
    Walters, Evan T.
    Rowley, Christopher N.
    Gumbart, James C.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (07)
  • [2] Molecular dynamics simulation of HIV-protease with polarizable and non-polarizable force fields
    Meher, B. R.
    Kumar, M. V. Satish
    Bandyopadhyay, Pradipta
    INDIAN JOURNAL OF PHYSICS, 2009, 83 (01) : 81 - 90
  • [3] Potential of mean force for ion pairs in non-aqueous solvents. Comparison of polarizable and non-polarizable MD simulations
    Odinokov, A. V.
    Leontyev, I. V.
    Basilevsky, M. V.
    Petrov, N. Ch.
    MOLECULAR PHYSICS, 2011, 109 (02) : 217 - 227
  • [4] Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields
    Lee, Myung Won
    Meuwly, Markus
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (46) : 20303 - 20312
  • [5] Accounting for electronic polarization in non-polarizable force fields
    Leontyev, Igor
    Stuchebrukhov, Alexei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (07) : 2613 - 2626
  • [6] Cooperativity and Frustration Effects (or Lack Thereof) in Polarizable and Non-polarizable Force Fields
    Nochebuena, Jorge
    Piquemal, Jean-Philip
    Liu, Shubin
    Cisneros, G. Andres
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (21) : 7715 - 7730
  • [7] Structure of aqueous alkali metal halide electrolyte solutions from molecular simulations of phase-transferable polarizable models
    Dockal, Jan
    Mimrova, Pavlina
    Lisal, Martin
    Moucka, Filip
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 394
  • [8] Polarizable force fields for molecular dynamics simulations of biomolecules
    Baker, Christopher M.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2015, 5 (02) : 241 - 254
  • [9] Phase diagram of NaCl-water by computer simulations: performance of non-polarizable force-fields
    Cassinello, Guillermo
    Noya, Eva G.
    Sanz, Eduardo
    Lamas, Cintia P.
    MOLECULAR PHYSICS, 2024,
  • [10] Recent Developments in Polarizable Molecular Dynamics Simulations of Electrolyte Solutions
    Szabadi, Andras
    Schroeder, Christian
    JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY, 2022, 21 (04): : 415 - 429