Ground State Solutions for a Non-Local Type Problem in Fractional Orlicz Sobolev Spaces

被引:0
作者
Wang, Liben [1 ]
Zhang, Xingyong [2 ]
Liu, Cuiling [2 ]
机构
[1] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Sci, Kunming 650500, Peoples R China
关键词
fractional Orlicz-Sobolev spaces; fractional Phi-Laplacian; critical point; ground state; NONLINEAR SCHRODINGER-EQUATIONS; P-LAPLACIAN EQUATIONS; R-N; EXISTENCE;
D O I
10.3390/axioms13050294
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following non-local problem in fractional Orlicz-Sobolev spaces: (-Delta Phi)su+V(x)a(|u|)u=f(x,u), x is an element of RN, where (-Delta Phi)s(s is an element of(0,1)) denotes the non-local and maybe non-homogeneous operator, the so-called fractional Phi-Laplacian. Without assuming the Ambrosetti-Rabinowitz type and the Nehari type conditions on the non-linearity f, we obtain the existence of ground state solutions for the above problem with periodic potential function V(x). The proof is based on a variant version of the mountain pass theorem and a Lions' type result in fractional Orlicz-Sobolev spaces.
引用
收藏
页数:22
相关论文
共 37 条
  • [1] Adams R.A., 2003, SOBOLEV SPACES PURE, V140
  • [2] Fractional Orlicz-Sobolev embeddings
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 149 : 216 - 253
  • [3] Phase transition with the line-tension effect
    Alberti, G
    Bouchitte, G
    Seppecher, P
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 144 (01) : 1 - 46
  • [4] Alves CO, 2014, TOPOL METHOD NONL AN, V44, P435
  • [5] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [6] MULTIPLICITY AND CONCENTRATION RESULTS FOR SOME NONLINEAR SCHRODINGER EQUATIONS WITH THE FRACTIONAL p-LAPLACIAN
    Ambrosio, Vincenzo
    Isernia, Teresa
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (11) : 5835 - 5881
  • [7] Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Srati, Mohammed
    [J]. ADVANCES IN OPERATOR THEORY, 2020, 5 (04) : 1350 - 1375
  • [8] On the fractional Musielak-Sobolev spaces in Rd: Embedding results & applications
    Bahrouni, Anouar
    Missaoui, Hlel
    Ounaies, Hichem
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (01)
  • [9] Problems involving the fractional g-Laplacian with lack of compactness
    Bahrouni, Sabri
    Ounaies, Hichem
    Elfalah, Olfa
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (01)
  • [10] BASIC RESULTS OF FRACTIONAL ORLICZ-SOBOLEV SPACE AND APPLICATIONS TO NON-LOCAL PROBLEMS
    Bahrouni, Sabri
    Ounaies, Hichem
    Tavares, Leandro S.
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 55 (02) : 681 - 695