Steady Solutions to Equations of Viscous Compressible Multifluids

被引:0
作者
Mamontov, Alexander [1 ,2 ]
Prokudin, Dmitriy [1 ,3 ]
机构
[1] Russian Acad Sci, Lavrentyev Inst Hydrodynam, Siberian Branch, Lavrentyev Pr 15, Novosibirsk 630090, Russia
[2] Altai State Univ, Lab Math & Comp Modeling Nat & Ind Syst, Lenin Pr 61, Barnaul 656049, Russia
[3] Siberian State Univ Telecommun & Informat Sci, Dept Higher Math, Kirova Str 86, Novosibirsk 630102, Russia
关键词
viscous compressible multifluid; viscosity matrix; barotropic flow; boundary value problem; weak generalized solution; existence theorem; BOUNDARY-VALUE PROBLEM; 2-VELOCITY HYDRODYNAMICS; DIFFERENTIAL-EQUATIONS; WEAK SOLUTIONS; EXISTENCE; MOTION; SOLUBILITY; MIXTURES;
D O I
10.3390/axioms13060362
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the differential equations of the barotropic dynamics of compressible viscous multifluids in a bounded three-dimensional domain with an immobile rigid boundary, a study of the solvability of the boundary value problem is made. Weak generalized solutions to the boundary value problem are shown to exist with weak constraints on the types of viscosity matrices and constitutive equations for pressure and momentum exchange.
引用
收藏
页数:24
相关论文
共 39 条
[1]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[2]   Two-velocity hydrodynamics in fluid mechanics: Part I Well posedness for zero Mach number systems [J].
Bresch, Didier ;
Giovangigli, Vincent ;
Zatorska, Ewelina .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (04) :762-800
[3]   Two-velocity hydrodynamics in fluid mechanics: Part II Existence of global κ-entropy solutions to the compressible Navier-Stokes systems with degenerate viscosities [J].
Bresch, Didier ;
Desjardins, Benoit ;
Zatorska, Ewelina .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (04) :801-836
[4]  
[Чеботарев А.Ю. Chebotarev A.Yu.], 2021, [Дальневосточный математический журнал, Far Eastern Mathematical Journal, Dal'nevostochnyi matematicheskii zhurnal], V21, P113, DOI 10.47910/FEMJ202110
[5]   COMMUTATORS OF SINGULAR INTEGRALS AND BILINEAR SINGULAR INTEGRALS [J].
COIFMAN, RR ;
MEYER, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) :315-331
[6]  
Denisova I. V., 2012, J MATH SCI, V185, P668
[7]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[8]   On the motion of a viscous compressible fluid driven by a time-periodic external force [J].
Feireisl, E ;
Matusu-Necasová, S ;
Petzeltová, H ;
Straskraba, I .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 149 (01) :69-96
[9]  
Feireisl E., 2001, Comment. Math. Univ. Carol., V42, P83
[10]  
Feireisl E., 2004, Dynamics of Viscous Compressible Fluids