CLE Diffusion: Controllable Light Enhancement Diffusion Model

被引:16
作者
Yin, Yuyang [1 ]
Xu, Dejia [2 ]
Tan, Chuangchuang [1 ]
Liu, Ping [3 ]
Zhao, Yao [1 ]
Wei, Yunchao [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing Key Lab Adv Informat Sci & Network, Beijing, Peoples R China
[2] Univ Texas Austin, VITA Grp, Austin, TX USA
[3] ASTAR, IHPC, Ctr Frontier AI Res, Singapore, Singapore
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023 | 2023年
关键词
image processing; low light image enhancement; diffusion model; ILLUMINATION; RETINEX;
D O I
10.1145/3581783.3612145
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low light enhancement has gained increasing importance with the rapid development of visual creation and editing. However, most existing enhancement algorithms are designed to homogeneously increase the brightness of images to a pre-defined extent, limiting the user experience. To address this issue, we propose Controllable Light Enhancement Diffusion Model, dubbed CLE Diffusion, a novel diffusion framework to provide users with rich controllability. Built with a conditional diffusion model, we introduce an illumination embedding to let users control their desired brightness level. Additionally, we incorporate the Segment-Anything Model (SAM) to enable user-friendly region controllability, where users can click on objects to specify the regions they wish to enhance. Extensive experiments demonstrate that CLE Diffusion achieves competitive performance regarding quantitative metrics, qualitative results, and versatile controllability. Project page: https://yuyangyin.github.io/CLEDiffusion/
引用
收藏
页码:8145 / 8156
页数:12
相关论文
共 50 条
  • [31] CPDM: Content-preserving diffusion model for underwater image enhancement
    Shi, Xiaowen
    Wang, Yuan-Gen
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [32] SFDiff: Diffusion model with sufficient spatial-Fourier frequency information interaction for low-light image enhancement
    Wan, Fei
    Xu, Bingxin
    Yao, Jingli
    Zeng, Lu
    Pan, Weiguo
    Liu, Hongzhe
    [J]. IET IMAGE PROCESSING, 2024, 18 (13) : 4394 - 4410
  • [33] Detailed and Controllable Old Photo Restoration with Diffusion Priors
    Liu, Xibei
    Wang, Han
    Wang, Yiwen
    Zhang, Yuhong
    Song, Jiayi
    Xie, Rong
    Song, Li
    [J]. 19TH IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING, BMSB 2024, 2024, : 374 - 379
  • [34] LLDiffusion: Learning degradation representations in diffusion models for low-light image enhancement
    Wang, Tao
    Zhang, Kaihao
    Zhang, Yong
    Luo, Wenhan
    Stenger, Bjorn
    Lu, Tong
    Kim, Tae-Kyun
    Liu, Wei
    [J]. PATTERN RECOGNITION, 2025, 166
  • [35] LighTDiff: Surgical Endoscopic Image Low-Light Enhancement with T-Diffusion
    Chen, Tong
    Lyu, Qingcheng
    Bai, Long
    Guo, Erjian
    Gao, Huxin
    Yang, Xiaoxiao
    Ren, Hongliang
    Zhou, Luping
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VI, 2024, 15006 : 369 - 379
  • [36] When Diffusion MRI Meets Diffusion Model: A Novel Deep Generative Model for Diffusion MRI Generation
    Zhu, Xi
    Zhang, Wei
    Li, Yijie
    O'Donnell, Lauren J.
    Zhang, Fan
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II, 2024, 15002 : 530 - 540
  • [37] Contrast Enhancement by Nonlinear Diffusion Filtering
    Liang, Zhetong
    Liu, Weijian
    Yao, Ruohe
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (02) : 673 - 686
  • [38] GAN and Diffusion Based Speech Enhancement
    Ayata, Deger
    Horasan, Ugur
    [J]. 32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [39] The diffusion model visualizer: an interactive tool to understand the diffusion model parameters
    Rainer W. Alexandrowicz
    [J]. Psychological Research, 2020, 84 : 1157 - 1165
  • [40] The diffusion model visualizer: an interactive tool to understand the diffusion model parameters
    Alexandrowicz, Rainer W.
    [J]. PSYCHOLOGICAL RESEARCH-PSYCHOLOGISCHE FORSCHUNG, 2020, 84 (04): : 1157 - 1165