This paper explores the adaptive finite-time neural control issue for nonlinear systems with input dead zone and output hysteresis in nonstrict-feedback form. The unknown functions are estimated by employing the radial basis function neural networks (RBFNN) approach. A systematic adaptive finite-time control method is introduced using the backstepping technique and neural network approximation properties. The stability of the system is also examined by using semi-global practical finite-time stability theory. The established control approach guarantees the boundedness of all signals within the closed-loop system, enabling the system output to accurately follow the desired signal within a finite time framework while maintaining a small and bounded tracking error. Finally, simulation results are shown to demonstrate the efficacy of the suggested strategy.
机构:
South China Univ Technol, Sch Automat Sci & Engn, Ctr Control & Optimizat, Guangzhou 510641, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Ctr Control & Optimizat, Guangzhou 510641, Guangdong, Peoples R China
机构:
East China Univ Sci & Technol, Minist Educ, Key Lab Adv Control & Optimizat Chem Proc, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Minist Educ, Key Lab Adv Control & Optimizat Chem Proc, Shanghai 200237, Peoples R China
Yu, Zhaoxu
Li, Shugang
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Dept Informat Management, Shanghai 200444, Peoples R ChinaEast China Univ Sci & Technol, Minist Educ, Key Lab Adv Control & Optimizat Chem Proc, Shanghai 200237, Peoples R China
Li, Shugang
Yu, Zhaosheng
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Elect Power, Guangzhou 510640, Guangdong, Peoples R ChinaEast China Univ Sci & Technol, Minist Educ, Key Lab Adv Control & Optimizat Chem Proc, Shanghai 200237, Peoples R China
Yu, Zhaosheng
Li, Fangfei
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Minist Educ, Key Lab Adv Control & Optimizat Chem Proc, Shanghai 200237, Peoples R China
机构:
Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150080, Peoples R China
City Univ Hong Kong, Dept Biomed Engn, Kowloon, Hong Kong, Peoples R ChinaHarbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150080, Peoples R China
Wang, Anqing
Liu, Lu
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Biomed Engn, Kowloon, Hong Kong, Peoples R ChinaHarbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150080, Peoples R China
Liu, Lu
Qiu, Jianbin
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150080, Peoples R China
Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150080, Peoples R ChinaHarbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150080, Peoples R China
Qiu, Jianbin
Feng, Gang
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Biomed Engn, Kowloon, Hong Kong, Peoples R ChinaHarbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150080, Peoples R China
机构:
Bohai Univ, Sch Math & Phys, Jinzhou 121000, Peoples R China
Bohai Univ, Automat Res Inst, Jinzhou 121000, Peoples R ChinaBohai Univ, Sch Math & Phys, Jinzhou 121000, Peoples R China
Zhao, Yuzhuo
Niu, Ben
论文数: 0引用数: 0
h-index: 0
机构:
Bohai Univ, Sch Math & Phys, Jinzhou 121000, Peoples R China
Bohai Univ, Automat Res Inst, Jinzhou 121000, Peoples R China
Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Shandong, Peoples R ChinaBohai Univ, Sch Math & Phys, Jinzhou 121000, Peoples R China
Niu, Ben
Wang, Huanqing
论文数: 0引用数: 0
h-index: 0
机构:
Bohai Univ, Sch Math & Phys, Jinzhou 121000, Peoples R China
Bohai Univ, Automat Res Inst, Jinzhou 121000, Peoples R ChinaBohai Univ, Sch Math & Phys, Jinzhou 121000, Peoples R China
Wang, Huanqing
Yang, Dong
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Engn, Rizhao 276826, Peoples R ChinaBohai Univ, Sch Math & Phys, Jinzhou 121000, Peoples R China