Advancing Gene Expression Data Analysis: an Innovative Multi-objective Optimization Algorithm for Simultaneous Feature Selection and Clustering

被引:2
作者
Gupta, Pooja [1 ]
Alok, Abhay Kumar [2 ]
Sharma, Vineet [3 ]
机构
[1] Dr APJ Abdul Kalam Techn Univ, Lucknow, Uttar Pradesh, India
[2] Indian Inst Technol, Patna, India
[3] KIET Grp Inst, Ghaziabad, Delhi, India
关键词
Gene expression data Clustering; Feature selection; Point symmetry based distance; AMOSA; Cluster validity index; Feature weight index; ENSEMBLE; MODEL;
D O I
10.1590/1678-4324-2024230508
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clustering algorithms play a crucial role in identifying co -expressed genes in microarray data, while feature subset identification is equally important when dealing with large data matrices. In this research paper, we address the problem of simultaneous feature selection and gene expression data clustering within a multiobjective optimization framework. Our approach employs the Archived multi -objective simulated annealing (AMOSA) algorithm to optimize a multi -objective function that incorporates two internal validity indices and a feature weight index. To determine data point membership in different clusters, we utilize a point symmetrybased distance metric. We demonstrate the effectiveness of our proposed approach on three publicly available gene expression datasets using the Silhouette index. Furthermore, we compare the clustering results of our approach, unsupervised feature selection and clustering using Multi -objective optimization framework (UFSC-MOO), to nine other existing techniques, showing its superior performance. Statistical significance is confirmed through Wilcoxon Rank Sum test. Also, biological significance test is employed to show that the obtained clustering solutions are biologically enriched.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Multi-Objective Evolutionary Simultaneous Feature Selection and Outlier Detection for Regression
    Jimenez, Fernando
    Lucena-Sanchez, Estrella
    Sanchez, Gracia
    Sciavicco, Guido
    [J]. IEEE ACCESS, 2021, 9 : 135675 - 135688
  • [42] Multi-objective memetic differential evolution optimization algorithm for text clustering problems
    Mustafa, Hossam M. J.
    Ayob, Masri
    Shehadeh, Hisham A.
    Abu-Taleb, Sawsan
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (02) : 1711 - 1731
  • [43] Multi-objective Genetic Algorithm Approach to Feature Subset Optimization
    Saroj, Jyoti
    [J]. SOUVENIR OF THE 2014 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2014, : 544 - 548
  • [44] A Modified Variable Velocity Strategy Particle Swarm Optimization Algorithm for Multi-objective Feature Selection
    Liu, Xikun
    Niu, Ben
    Yi, Wenjie
    [J]. ADVANCES IN SWARM INTELLIGENCE, PT I, ICSI 2024, 2024, 14788 : 46 - 57
  • [45] Text clustering with a hybrid multi-objective optimization approach: The multi-objective firefly differential Jaya Algorithm
    Naderi, Muhammad
    Amiri, Maryam
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2025, 93
  • [46] Informative Feature Clustering and Selection for Gene Expression Data
    Yang, Yuqi
    Yin, Pengshuai
    Luo, Zhihang
    Gu, Wenwen
    Chen, Renjie
    Wu, Qingyao
    [J]. IEEE ACCESS, 2019, 7 : 169174 - 169184
  • [47] A multi-objective algorithm for multi-label filter feature selection problem
    Hongbin Dong
    Jing Sun
    Tao Li
    Rui Ding
    Xiaohang Sun
    [J]. Applied Intelligence, 2020, 50 : 3748 - 3774
  • [48] Multi-objective optimization of feature selection using hybrid cat swarm optimization
    Gao, Xiao-Zhi
    Nalluri, Madhu Sudana Rao
    Kannan, K.
    Sinharoy, Diptendu
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (03) : 508 - 520
  • [49] Multi-objective optimization of feature selection using hybrid cat swarm optimization
    Xiao-Zhi Gao
    Madhu Sudana Rao Nalluri
    K. Kannan
    Diptendu Sinharoy
    [J]. Science China Technological Sciences, 2021, 64 : 508 - 520
  • [50] A multi-objective algorithm for multi-label filter feature selection problem
    Dong, Hongbin
    Sun, Jing
    Li, Tao
    Ding, Rui
    Sun, Xiaohang
    [J]. APPLIED INTELLIGENCE, 2020, 50 (11) : 3748 - 3774