MDC-RHT: Multi-Modal Medical Image Fusion via Multi-Dimensional Dynamic Convolution and Residual Hybrid Transformer

被引:4
作者
Wang, Wenqing [1 ,2 ]
He, Ji [1 ]
Liu, Han [1 ,2 ]
Yuan, Wei [1 ]
机构
[1] Xian Univ Technol, Sch Automat & Informat Engn, Xian 710048, Peoples R China
[2] Xian Univ Technol, Shaanxi Key Lab Complex Syst Control & Intelligent, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
medical image fusion; residual hybrid transformer; multi-dimensional dynamic convolution; deep learning; QUALITY ASSESSMENT; INFORMATION; PERFORMANCE;
D O I
10.3390/s24134056
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The fusion of multi-modal medical images has great significance for comprehensive diagnosis and treatment. However, the large differences between the various modalities of medical images make multi-modal medical image fusion a great challenge. This paper proposes a novel multi-scale fusion network based on multi-dimensional dynamic convolution and residual hybrid transformer, which has better capability for feature extraction and context modeling and improves the fusion performance. Specifically, the proposed network exploits multi-dimensional dynamic convolution that introduces four attention mechanisms corresponding to four different dimensions of the convolutional kernel to extract more detailed information. Meanwhile, a residual hybrid transformer is designed, which activates more pixels to participate in the fusion process by channel attention, window attention, and overlapping cross attention, thereby strengthening the long-range dependence between different modes and enhancing the connection of global context information. A loss function, including perceptual loss and structural similarity loss, is designed, where the former enhances the visual reality and perceptual details of the fused image, and the latter enables the model to learn structural textures. The whole network adopts a multi-scale architecture and uses an unsupervised end-to-end method to realize multi-modal image fusion. Finally, our method is tested qualitatively and quantitatively on mainstream datasets. The fusion results indicate that our method achieves high scores in most quantitative indicators and satisfactory performance in visual qualitative analysis.
引用
收藏
页数:22
相关论文
共 54 条
[1]   A new image quality metric for image fusion: The sum of the correlations of differences [J].
Aslantas, V. ;
Bendes, E. .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2015, 69 (12) :160-166
[2]   THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE [J].
BURT, PJ ;
ADELSON, EH .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) :532-540
[3]   Activating More Pixels in Image Super-Resolution Transformer [J].
Chen, Xiangyu ;
Wang, Xintao ;
Zhou, Jiantao ;
Qiao, Yu ;
Dong, Chao .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :22367-22377
[4]   MUFusion: A general unsupervised image fusion network based on memory unit [J].
Cheng, Chunyang ;
Xu, Tianyang ;
Wu, Xiao-Jun .
INFORMATION FUSION, 2023, 92 :80-92
[5]   EXplainable Artificial Intelligence (XAI) for facilitating recognition of algorithmic bias: An experiment from imposed users' perspectives [J].
Chuan, Ching-Hua ;
Sun, Ruoyu ;
Tian, Shiyun ;
Tsai, Wan-Hsiu Sunny .
TELEMATICS AND INFORMATICS, 2024, 91
[6]   Image fusion metric based on mutual information and Tsallis entropy [J].
Cvejic, N. ;
Canagarajah, C. N. ;
Bull, D. R. .
ELECTRONICS LETTERS, 2006, 42 (11) :626-627
[7]   High quality multi-spectral and panchromatic image fusion technologies based on Curvelet transform [J].
Dong, Limin ;
Yang, Qingxiang ;
Wu, Haiyong ;
Xiao, Huachao ;
Xu, Mingliang .
NEUROCOMPUTING, 2015, 159 :268-274
[8]   CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows [J].
Dong, Xiaoyi ;
Bao, Jianmin ;
Chen, Dongdong ;
Zhang, Weiming ;
Yu, Nenghai ;
Yuan, Lu ;
Chen, Dong ;
Guo, Baining .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :12114-12124
[9]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[10]   Anatomical-Functional Image Fusion by Information of Interest in Local Laplacian Filtering Domain [J].
Du, Jiao ;
Li, Weisheng ;
Xiao, Bin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (12) :5855-5866