BOUNDS FOR THE MAXIMUM EIGENVALUES OF THE FIBONACCI-FRANK AND LUCAS-FRANK MATRICES

被引:2
作者
Mersin, Efruz Ozlem [1 ]
Bahsi, Mustafa [2 ]
机构
[1] Aksaray Univ, Dept Math, Aksaray, Turkiye
[2] Aksaray Univ, Dept Math & Sci Educ, Aksaray, Turkiye
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2024年 / 73卷 / 02期
关键词
Fibonacci sequence; Lucas sequence; Frank matrix; eigenvalue; bounds; norm; CIRCULANT MATRICES; STURM SEQUENCES; NORMS; THEOREM;
D O I
10.31801/cfsuasmas.1299736
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. Frank matrix is one of the popular test matrices for eigenvalue routines because it has well-conditioned and poorly conditioned eigenvalues. In this paper, we investigate the bounds for the maximum eigenvalues of the special cases of the generalized Frank matrices which are called FibonacciFrank and Lucas-Frank matrices. Then, we obtain the Euclidean norms and the upper bounds for the spectral norms of these matrices.
引用
收藏
页码:420 / 436
页数:17
相关论文
共 24 条
[1]  
[Anonymous], 1965, The Algebraic Eigenvalue Problem
[2]  
Bahsi M, 2015, TWMS J PURE APPL MAT, V6, P84
[3]  
DUPREE E., 2012, Int. J. Contemp. Math. Science., V7, P2327
[4]   COMPUTING EIGENVALUES OF COMPLEX MATRICES BY DETERMINANT EVALUATION AND BY METHODS OF DANILEWSKI AND WIELANDT [J].
FRANK, WL .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1958, 6 (04) :378-392
[5]   STURM SEQUENCES FOR NONLINEAR EIGENVALUE PROBLEMS [J].
GREENBERG, L .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (01) :182-199
[6]   A REMARK ON FRANK MATRICES [J].
HAKE, JF .
COMPUTING, 1985, 35 (3-4) :375-379
[7]  
Horn Roger A., 2012, Matrix Analysis
[8]  
Jafari-Petroudi S. H, 2016, International Journal of Advances in Applied Mathematics and Mechanics, V3, P82
[9]  
Koshy T, 2001, Fibonacci and Lucas Numbers with Applications
[10]  
Mersin E. O., 2021, PhD. Thesis