Low Mach number limit of the full compressible Navier-Stokes-Korteweg equations with general initial data

被引:0
作者
Hao, Kaige [1 ]
Li, Yeping [1 ]
Yin, Rong [1 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
Full compressible Navier-Stokes-Korteweg equation; low Mach number limit; general initial data; local smooth solution; VANISHING CAPILLARITY LIMIT; VISCOUS CONTACT WAVE; INCOMPRESSIBLE LIMIT; FLUID MODELS; RAREFACTION WAVES; SINGULAR LIMITS; WELL-POSEDNESS; STABILITY; EXISTENCE; DYNAMICS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper, the low Mach number limit for the three-dimensional full compressible Navier-Stokes-Korteweg equations with general initial data is rigorously justified within the framework of local smooth solution. Under the assumption of large temperature variations, we first obtain the uniform-inMach-number estimates of the solutions in a epsilon-weighted Sobolev space, which establishes the local existence theorem of the three-dimensional full compressible Navier-Stokes-Korteweg equations on a finite time interval independent of Mach number. Then, the low mach limit is proved by combining the uniform estimates and a strong convergence theorem of the solution for the acoustic wave equations. This result improves that of [K.-J. Sha and Y.-P. Li, Z. Angew. Math. Phys., 70(2019), 169] for well-prepared initial data.
引用
收藏
页码:281 / 304
页数:24
相关论文
共 42 条
[1]   Low mach number limit of the full Navier-Stokes equations [J].
Alazard, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) :1-73
[2]   A MINICOURSE ON THE LOW MACH NUMBER LIMIT [J].
Alazard, Thomas .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (03) :365-404
[3]   VANISHING CAPILLARITY LIMIT OF THE COMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE TO THE NAVIER-STOKES EQUATIONS [J].
Bian, Dongfen ;
Yao, Lei ;
Zhu, Changjiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) :1633-1650
[4]   TIME PERIODIC SOLUTIONS OF THE NON-ISENTROPIC COMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE [J].
Cai, Hong ;
Tan, Zhong ;
Xu, Qiuju .
KINETIC AND RELATED MODELS, 2015, 8 (01) :29-51
[5]   Global stability of combination of a viscous contact wave with rarefaction waves for the compressible fluid models of Korteweg type [J].
Chen, Zhengzheng ;
Sheng, Mengdi .
NONLINEARITY, 2019, 32 (02) :395-444
[6]   Global smooth solutions to the nonisothermal compressible fluid models of Korteweg type with large initial data [J].
Chen, Zhengzheng ;
He, Lin ;
Zhao, Huijiang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (04)
[7]   Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system [J].
Chen, Zhengzheng ;
Zhao, Huijiang .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (03) :330-371
[8]   Convergence. to the superposition of rarefaction waves and contact discontinuity for the 1-D compressible Navier-Stokes-Korteweg system [J].
Chen, Zhengzheng ;
Xiong, Linjie ;
Meng, Yijie .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) :646-663
[9]   Nonlinear stability of viscous contact wave for the one-dimensional compressible fluid models of Korteweg type [J].
Chen, Zhengzheng ;
Xiao, Qinghua .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (17) :2265-2279
[10]   Low Mach number limit for viscous compressible flows [J].
Danchin, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03) :459-475