Machine learning-assisted liquid crystal-based aptasensor for the specific detection of whole-cell Escherichia coli in water and food

被引:18
作者
Mostajabodavati, Saba [1 ]
Mousavizadegan, Maryam [1 ]
Hosseini, Morteza [1 ,2 ]
Mohammadimasoudi, Mohammad [3 ]
Mohammadi, Javad [4 ]
机构
[1] Univ Tehran, Fac New Sci & Technol, Dept Life Sci Engn, Nanobiosensors Lab, Tehran 1439817435, Iran
[2] Univ Tehran Med Sci, Fac Pharm, Med Biomat Res Ctr, Dept Pharmaceut Biomat, Tehran, Iran
[3] Univ Tehran, Fac New Sci & Technol, Nanobiophoton Lab, Tehran 1439817435, Iran
[4] Univ Tehran, Fac New Sci & Technol, Dept Life Sci Engn, Tehran 1439817435, Iran
关键词
Aptasensor; E; coli; Image analysis; Liquid crystal; Machine learning; Pathogen;
D O I
10.1016/j.foodchem.2024.139113
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
We have developed a rapid, facile liquid crystal (LC)-based aptasensor for E. coli detection in water and juice samples. A textile grid-anchored LC platform was used with specific aptamers adsorbed via a cationic surfactant, cetyltrimethylammonium bromide (CTAB), on the LC surface. The presence of E. coli dissociates the aptamers from CTAB and restores the dark signal induced by the surfactant. Using polarized microscopy, the images of the LCs in the presence of various concentrations of E. coli were captured and analyzed using image analysis and machine learning (ML). The artificial neural networks (ANN) and extreme gradient boosting (XGBoost) rendered the best results for water samples (R 2 = 0.986 and RMSE = 0.209) and juice samples (R 2 = 0.976 and RMSE = 0.262), respectively. The platform was able to detect E. coli with a detection limit (LOD) of 6 CFU mL -1 .
引用
收藏
页数:8
相关论文
共 39 条
[1]   DNA aptamer-based non-faradaic impedance biosensor for detecting E. coli [J].
Abdelrasoul, Gaser N. ;
Anwar, Afreen ;
MacKay, Scott ;
Tamura, Marcus ;
Shah, Manzoor A. ;
Khasa, Damase P. ;
Montgomery, Ruth R. ;
Ko, Albert, I ;
Chen, Jie .
ANALYTICA CHIMICA ACTA, 2020, 1107 :135-144
[2]   Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review [J].
Ali, Athmar A. ;
Altemimi, Ammar B. ;
Alhelfi, Nawfal ;
Ibrahim, Salam A. .
BIOSENSORS-BASEL, 2020, 10 (06)
[3]   Prediction of Pulmonary Diseases With Electronic Nose Using SVM and XGBoost [J].
Binson, V. A. ;
Subramoniam, M. ;
Sunny, Youhan ;
Mathew, Luke .
IEEE SENSORS JOURNAL, 2021, 21 (18) :20886-20895
[4]  
Botchkarev A., 2019, INTERDISCIP J INF KN, V14, P45, DOI [10.28945/4184, DOI 10.28945/4184]
[5]   Aptasensors for the detection of infectious pathogens: design strategies and point-of-care testing [J].
Chen, Xiao-Fei ;
Zhao, Xin ;
Yang, Zifeng .
MICROCHIMICA ACTA, 2022, 189 (12)
[6]   Aptamer-based SERS biosensor for whole cell analytical detection of E. coli O157:H7 [J].
Diaz-Amaya, Susana ;
Lin, Li-Kai ;
Deering, Amanda J. ;
Stanciu, Lia A. .
ANALYTICA CHIMICA ACTA, 2019, 1081 :146-156
[7]   Pathogen contamination of groundwater systems and health risks [J].
Dong, Yiran ;
Jiang, Zhou ;
Hu, Yidan ;
Jiang, Yongguang ;
Tong, Lei ;
Yu, Ying ;
Cheng, Jianmei ;
He, Yu ;
Shi, Jianbo ;
Wang, Yanxin .
CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024, 54 (04) :267-289
[8]   Dual recognition and highly sensitive detection of Listeria monocytogenes in food by fluorescence enhancement effect based on Fe3O4@ZIF-8-aptamer [J].
Du, Juan ;
Chen, Xin ;
Liu, Kai ;
Zhao, Dianbo ;
Bai, Yanhong .
SENSORS AND ACTUATORS B-CHEMICAL, 2022, 360
[9]   Rapid, label-free and low-cost diagnostic kit for COVID-19 based on liquid crystals and machine learning [J].
Esmailpour M. ;
Mohammadimasoudi M. ;
Shemirani M.G. ;
Goudarzi A. ;
Heidari Beni M.-H. ;
Shahsavarani H. ;
Aghajan H. ;
Mehrbod P. ;
Salehi-Vaziri M. ;
Fotouhi F. .
Biosensors and Bioelectronics: X, 2022, 12
[10]   Detection of COVID-19: A Smartphone-Based Machine-Learning- Assisted ECL Immunoassay Approach with the Ability of RT-PCR CT Value Prediction [J].
Firoozbakhtian, Ali ;
Hosseini, Morteza ;
Sheikholeslami, Mahsa Naghavi ;
Salehnia, Foad ;
Xu, Guobao ;
Rabbani, Hodjattallah ;
Sobhanie, Ebtesam .
ANALYTICAL CHEMISTRY, 2022, :16361-16368