Numerical Simulation of Radiatively Driven Transonic Relativistic Jets

被引:3
|
作者
Joshi, Raj Kishor [1 ,2 ]
Chattopadhyay, Indranil [2 ]
Tsokaros, Antonios [3 ,4 ,5 ]
Tripathi, Priyesh Kumar [5 ]
机构
[1] Aryabhatta Res Inst Observat Sci ARIES, Naini Tal 263001, India
[2] Deen Dayal Upadhyay Gorakhpur Univ, Dept Phys, Gorakhpur 273009, India
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[5] Acad Athens, Res Ctr Astron & Appl Math, Athens 11527, Greece
来源
ASTROPHYSICAL JOURNAL | 2024年 / 971卷 / 01期
基金
美国国家科学基金会;
关键词
SUPERCRITICAL ACCRETION DISKS; BLACK-HOLE ACCRETION; PLASMA JETS; FLOWS; SHOCKS; DYNAMICS; OUTFLOWS; HYDRODYNAMICS; COLLIMATION; MORPHOLOGY;
D O I
10.3847/1538-4357/ad54c0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform the numerical simulations of axisymmetric, relativistic, optically thin jets under the influence of the radiation field of an accretion disk. We show that starting from a very low injection velocity at the base, jets can be accelerated to relativistic terminal speeds when traveling through the radiation field. The jet gains momentum through the interaction with the radiation field. We use a relativistic equation of state for multispecies plasma, which self-consistently calculates the adiabatic index for the jet material. All the jet solutions obtained are transonic in nature. In addition to the acceleration of the jet to relativistic speeds, our results show that the radiation field also acts as a collimating agent. The jets remain well collimated under the effect of radiation pressure. We also show that if the jet starts with a rotational velocity, the radiation field will reduce the angular momentum of the jet beam.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Formation of episodic magnetically driven radiatively cooled plasma jets in the laboratory
    Suzuki-Vidal, F.
    Lebedev, S. V.
    Ciardi, A.
    Bland, S. N.
    Chittenden, J. P.
    Hall, G. N.
    Harvey-Thompson, A.
    Marocchino, A.
    Ning, C.
    Stehle, C.
    Frank, A.
    Blackman, E. G.
    Bott, S. C.
    Ray, T.
    ASTROPHYSICS AND SPACE SCIENCE, 2009, 322 (1-4) : 19 - 23
  • [22] Formation of episodic magnetically driven radiatively cooled plasma jets in the laboratory
    F. Suzuki-Vidal
    S. V. Lebedev
    A. Ciardi
    S. N. Bland
    J. P. Chittenden
    G. N. Hall
    A. Harvey-Thompson
    A. Marocchino
    C. Ning
    C. Stehle
    A. Frank
    E. G. Blackman
    S. C. Bott
    T. Ray
    Astrophysics and Space Science, 2009, 322 : 19 - 23
  • [23] Numerical simulations of relativistic jets in collapsars
    Zhang, WQ
    Woosley, SE
    Heger, A
    GAMMA-RAY BURSTS: 30 YEARS OF DISCOVERY, 2004, 727 : 376 - 379
  • [24] Numerical simulations of relativistic magnetized jets
    Komissarov, SS
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 308 (04) : 1069 - 1076
  • [25] ELECTROMAGNETICALLY DRIVEN RELATIVISTIC JETS - A CLASS OF SELF-CONSISTENT NUMERICAL-SOLUTIONS
    LI, ZY
    ASTROPHYSICAL JOURNAL, 1993, 415 (01): : 118 - 128
  • [26] Numerical simulations of the Kelvin-Helmholtz instability in radiatively cooled jets
    Downes, TP
    Ray, TP
    ASTRONOMY & ASTROPHYSICS, 1998, 331 (03) : 1130 - 1142
  • [27] Acceleration and emission of MHD driven, relativistic jets
    Giannios, Dimitrios
    RECENT DEVELOPMENTS IN GRAVITY (NEB XIV), 2011, 283
  • [28] Numerical Simulation of Radiatively Driven Convection in a Small Ice-Covered Lake with a Lateral Pressure Gradient
    Smirnov, Sergei
    Smirnovsky, Alexander
    Zdorovennova, Galina
    Zdorovennov, Roman
    Efremova, Tatiana
    Palshin, Nikolay
    Bogdanov, Sergey
    WATER, 2023, 15 (22)
  • [29] Numerical Simulation of Impinging Jets
    Wilke, Robert
    Sesterhenn, Joern
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING'14: TRANSACTIONS OF THE HIGH PERFORMANCE COMPUTING CENTER, STUTTGART (HLRS) 2014, 2015, : 275 - 287
  • [30] NUMERICAL SIMULATION OF TURBULENT JETS
    Aziz, T. N.
    Raiford, J. P.
    Khan, A. A.
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2008, 2 (02) : 234 - 243