Bias-Correction Methods for the Unit Exponential Distribution and Applications

被引:0
|
作者
Xin, Hua [1 ]
Lio, Yuhlong [2 ]
Fan, Ya-Yen [3 ]
Tsai, Tzong-Ru [3 ]
机构
[1] Northeast Petr Univ, Sch Math & Stat, Daqing 163318, Peoples R China
[2] Univ South Dakota, Dept Math Sci, Vermillion, SD 57069 USA
[3] Tamkang Univ, Dept Stat, New Taipei City 251301, Taiwan
基金
中国国家自然科学基金;
关键词
bias; maximum likelihood estimation; moment; Newton-Raphson algorithm; INFERENCE;
D O I
10.3390/math12121828
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The bias of the maximum likelihood estimator can cause a considerable estimation error if the sample size is small. To reduce the bias of the maximum likelihood estimator under the small sample situation, the maximum likelihood and parametric bootstrap bias-correction methods are proposed in this study to obtain more reliable maximum likelihood estimators of the unit exponential distribution parameters. The procedure to implement the bias-corrected maximum likelihood estimation method is derived analytically, and the steps to obtain the bias-corrected bootstrap estimators are presented. The simulation results show that the proposed maximum likelihood bootstrap bias-correction method can significantly reduce the bias and mean squared error of the maximum likelihood estimators for most of the parameter combinations in the simulation study. A soil moisture data set and a numerical example are used for illustration.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Evaluating Bias-Correction Methods for Seasonal Dynamical Precipitation Forecasts
    Golian, Saeed
    Murphy, Conor
    JOURNAL OF HYDROMETEOROLOGY, 2022, 23 (08) : 1350 - 1363
  • [2] Evaluation of bias-correction methods for ensemble streamflow volume forecasts
    Hashino, T.
    Bradley, A. A.
    Schwartz, S. S.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2007, 11 (02) : 939 - 950
  • [3] Bias-correction in localization algorithms
    Ji, Yiming
    Yu, Changbin
    Anderson, Brian D. O.
    GLOBECOM - IEEE Global Telecommunications Conference, 2009,
  • [4] Estimating the failure rate of the log-logistic distribution by smooth adaptive and bias-correction methods
    Zheng, Xi
    Chiang, Jyun-You
    Tsai, Tzong-Ru
    Wang, Shuai
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 156
  • [5] Stochastic bias-correction of daily rainfall scenarios for hydrological applications
    Portoghese, I.
    Bruno, E.
    Guyennon, N.
    Iacobellis, V.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2011, 11 (09) : 2497 - 2509
  • [6] Bias-Correction In Localization Algorithms
    Ji, Yiming
    Yu, Changbin
    Anderson, Brian D. O.
    GLOBECOM 2009 - 2009 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-8, 2009, : 3468 - +
  • [7] Bias-correction fuzzy clustering algorithms
    Yang, Miin-Shen
    Tian, Yi-Cheng
    INFORMATION SCIENCES, 2015, 309 : 138 - 162
  • [8] Evaluation of Two Bias-Correction Methods for Gridded Climate Scenarios over Japan
    Ishizaki, Noriko N.
    Nishimori, Motoki
    Iizumi, Toshichika
    Shiogama, Hideo
    Hanasaki, Naota
    Takahashi, Kiyoshi
    SOLA, 2020, 16 : 80 - 85
  • [9] Unit extended exponential distribution with applications
    Ragab, Ibrahim E.
    Alsadat, Najwan
    Balogun, Oluwafemi Samson
    Elgarhy, Mohammed
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (04)
  • [10] Projecting Future Climate Change Scenarios Using Three Bias-Correction Methods
    Kum, Donghyuk
    Lim, Kyoung Jae
    Jang, Chun Hwa
    Ryu, Jichul
    Yang, Jae E.
    Kim, Seong Joon
    Kong, Dong Soo
    Jung, Younghun
    ADVANCES IN METEOROLOGY, 2014, 2014