Cooperative Eco-Driving Control of Connected Multi-Vehicles With Spatio-Temporal Constraints

被引:4
|
作者
Dong, Shiying [1 ]
Harzer, Jakob [2 ]
Frey, Jonathan [2 ,3 ]
Meng, Xiangyu [4 ]
Liu, Qifang [1 ]
Gao, Bingzhao [5 ]
Diehl, Moritz [2 ,3 ]
Chen, Hong [6 ,7 ]
机构
[1] Jilin Univ, Dept Control Sci & Engn, Changchun 130012, Peoples R China
[2] Univ Freiburg, Dept Microsyst Engn IMTEK, D-79110 Freiburg, Germany
[3] Univ Freiburg, Dept Math, Freiburg, Germany
[4] Louisiana State Univ, Div Elect & Comp Engn, Baton Rouge, LA 70803 USA
[5] Tongji Univ, Coll Automot Studies, Shanghai 201804, Peoples R China
[6] Tongji Univ, Shanghai Res Inst Intelligent Autonomous Syst, Shanghai 201804, Peoples R China
[7] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
来源
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES | 2024年 / 9卷 / 01期
基金
中国国家自然科学基金;
关键词
Optimal control; Vehicle dynamics; Intelligent vehicles; Indexes; Energy consumption; Dedicated short range communication; Cruise control; Eco-driving; connected and automated vehicles; spatio-temporal constraints; time-energy optimal control; TRAJECTORY OPTIMIZATION; ELECTRIC VEHICLES; ENERGY MANAGEMENT; DEPARTURE; SIGNALS; SYSTEM;
D O I
10.1109/TIV.2023.3282490
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we propose a novel time-energy optimal control approach with applications in cooperative eco-driving of connected and automated vehicles (CAVs) in urban traffic networks. Safely approaching and departing signalized intersections requires the satisfaction of both spatial equality constraints determined by intersection locations and temporal inequality constraints in compliance with the green light phases. To generate time- and energy-optimal trajectories, the optimal crossing times at intersections are firstly treated as characteristic time constraints, which makes the problem tractable. Then the direct multiple shooting method and time transformation technique are applied to find a numerical solution. The contribution of this article is twofold. The first one is the development of a novel time- and energy-optimal control approach that ensures a trade-off between minimizing energy and time for a general class of optimal control problems with multiple characteristic times. The second contribution is the application of the proposed method to the challenging problem of multi-CAVs' cooperative eco-driving control, in which multiple vehicles must simultaneously minimize travel time and energy consumption in the presence of spatio-temporal constraints. Simulation analysis over real-world urban route scenarios shows that the proposed eco-driving control strategy can save up to 8.2% of energy or reduce up to 6.7% of travel time compared to a baseline method. Furthermore, hardware-in-the-loop (HiL) experimental results indicate that the proposed strategy can be implemented in real-time.
引用
收藏
页码:1733 / 1743
页数:11
相关论文
共 50 条
  • [41] The Eco-Driving Considering Coordinated Control Strategy for the Intelligent Electric Vehicles
    Hao, Liang
    Sun, Bohua
    Li, Gang
    Guo, Lixin
    IEEE ACCESS, 2021, 9 : 10686 - 10698
  • [42] Dynamic Eco-Driving on Signalized Arterial Corridors during the Green Phase for the Connected Vehicles
    Zhao, Xiangmo
    Wu, Xia
    Xin, Qi
    Sun, Kang
    Yu, Shaowei
    JOURNAL OF ADVANCED TRANSPORTATION, 2020, 2020
  • [43] Eco-driving control strategy of connected electric vehicle at signalized intersection
    Chen H.
    Zhuang W.
    Yin G.
    Dong H.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2021, 51 (01): : 178 - 186
  • [44] Eco-driving policy for connected and automated fuel cell hybrid vehicles platoon in dynamic traffic scenarios
    Jia, Yuan
    Nie, Zhigen
    Wang, Wanqiong
    Lian, Yufeng
    Guerrero, Josep. M.
    Outbib, Rachid
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (49) : 18816 - 18834
  • [45] Design of a cooperative eco-driving rail control system: an experimental study
    La Delfa, S.
    Enjalbert, S.
    Polet, P.
    Vanderhaegen, F.
    COGNITION TECHNOLOGY & WORK, 2021, 23 (02) : 285 - 297
  • [46] Hierarchical eco-driving control strategy for connected automated fuel cell hybrid vehicles and scenario-/hardware-in-the loop validation
    Zhang, Yahui
    Wei, Zeyi
    Wang, Zhong
    Tian, Yang
    Wang, Jizhe
    Tian, Zhikun
    Xu, Fuguo
    Jiao, Xiaohong
    Li, Liang
    Wen, Guilin
    ENERGY, 2024, 292
  • [47] Multi-Train Eco-Driving and Safety-Tracking Cooperative Optimization by Nonlinear Programming
    Chen, Mo
    Murgovski, Nikolce
    Xiao, Zhuang
    Feng, Xiaoyun
    Wang, Qingyuan
    Sun, Pengfei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 2406 - 2417
  • [48] Multiobjective Eco-Driving Strategy for Connected and Automated Electric Vehicles Considering Complex Urban Traffic Influence Factors
    Li, Jie
    Wu, Xiaodong
    Xu, Min
    Liu, Yonggang
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (04): : 10043 - 10058
  • [49] Data-driven based eco-driving control for plug-in hybrid electric vehicles
    Li, Jie
    Liu, Yonggang
    Zhang, Yuanjian
    Lei, Zhenzhen
    Chen, Zheng
    Li, Guang
    JOURNAL OF POWER SOURCES, 2021, 498
  • [50] Guided Eco-driving of Fuel Cell Hybrid Electric Vehicles via Model Predictive Control
    Liu, Bo
    Sun, Chao
    Wei, Xiaodong
    Wen, Da
    Ning, Changjiu
    Li, Haoyu
    2023 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, VPPC, 2023,