Cooperative Eco-Driving Control of Connected Multi-Vehicles With Spatio-Temporal Constraints

被引:4
|
作者
Dong, Shiying [1 ]
Harzer, Jakob [2 ]
Frey, Jonathan [2 ,3 ]
Meng, Xiangyu [4 ]
Liu, Qifang [1 ]
Gao, Bingzhao [5 ]
Diehl, Moritz [2 ,3 ]
Chen, Hong [6 ,7 ]
机构
[1] Jilin Univ, Dept Control Sci & Engn, Changchun 130012, Peoples R China
[2] Univ Freiburg, Dept Microsyst Engn IMTEK, D-79110 Freiburg, Germany
[3] Univ Freiburg, Dept Math, Freiburg, Germany
[4] Louisiana State Univ, Div Elect & Comp Engn, Baton Rouge, LA 70803 USA
[5] Tongji Univ, Coll Automot Studies, Shanghai 201804, Peoples R China
[6] Tongji Univ, Shanghai Res Inst Intelligent Autonomous Syst, Shanghai 201804, Peoples R China
[7] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
来源
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES | 2024年 / 9卷 / 01期
基金
中国国家自然科学基金;
关键词
Optimal control; Vehicle dynamics; Intelligent vehicles; Indexes; Energy consumption; Dedicated short range communication; Cruise control; Eco-driving; connected and automated vehicles; spatio-temporal constraints; time-energy optimal control; TRAJECTORY OPTIMIZATION; ELECTRIC VEHICLES; ENERGY MANAGEMENT; DEPARTURE; SIGNALS; SYSTEM;
D O I
10.1109/TIV.2023.3282490
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we propose a novel time-energy optimal control approach with applications in cooperative eco-driving of connected and automated vehicles (CAVs) in urban traffic networks. Safely approaching and departing signalized intersections requires the satisfaction of both spatial equality constraints determined by intersection locations and temporal inequality constraints in compliance with the green light phases. To generate time- and energy-optimal trajectories, the optimal crossing times at intersections are firstly treated as characteristic time constraints, which makes the problem tractable. Then the direct multiple shooting method and time transformation technique are applied to find a numerical solution. The contribution of this article is twofold. The first one is the development of a novel time- and energy-optimal control approach that ensures a trade-off between minimizing energy and time for a general class of optimal control problems with multiple characteristic times. The second contribution is the application of the proposed method to the challenging problem of multi-CAVs' cooperative eco-driving control, in which multiple vehicles must simultaneously minimize travel time and energy consumption in the presence of spatio-temporal constraints. Simulation analysis over real-world urban route scenarios shows that the proposed eco-driving control strategy can save up to 8.2% of energy or reduce up to 6.7% of travel time compared to a baseline method. Furthermore, hardware-in-the-loop (HiL) experimental results indicate that the proposed strategy can be implemented in real-time.
引用
收藏
页码:1733 / 1743
页数:11
相关论文
共 50 条
  • [31] Connected and automated vehicles: A cooperative eco-driving strategy for heterogeneous vehicle platoon among multiple signalized intersections
    Kong, Yan
    Ma, Yao
    IFAC PAPERSONLINE, 2024, 58 (29): : 272 - 277
  • [32] Power-Based Optimal Longitudinal Control for a Connected Eco-Driving System
    Jin, Qiu
    Wu, Guoyuan
    Boriboonsomsin, Kanok
    Barth, Matthew J.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (10) : 2900 - 2910
  • [33] Model-Based Reinforcement Learning for Eco-Driving Control of Electric Vehicles
    Lee, Heeyun
    Kim, Namwook
    Cha, Suk Won
    IEEE ACCESS, 2020, 8 : 202886 - 202896
  • [34] Real-time Eco-Driving Algorithm for Connected and Automated Vehicles using Quadratic Programming
    Deshpande, Shreshta Rajakumar
    Bhagdikar, Piyush
    Gankov, Stanislav
    Sarlashkar, Jayant V.
    Hotz, Scott
    2024 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO, ITEC 2024, 2024,
  • [35] Eco-driving control for connected plug-in hybrid electric vehicles in urban scenarios with enhanced lane change engagement
    Li, Jie
    Liu, Yonggang
    Cheng, Jun
    Fotouhi, Abbas
    Chen, Zheng
    ENERGY, 2024, 310
  • [36] Role of Model Predictive Control for Enhancing Eco-Driving of Electric Vehicles in Urban Transport System of Japan
    Nie, Zifei
    Farzaneh, Hooman
    SUSTAINABILITY, 2021, 13 (16)
  • [37] Deep reinforcement learning-based eco-driving control for connected electric vehicles at signalized intersections considering traffic uncertainties
    Li, Jie
    Fotouhi, Abbas
    Pan, Wenjun
    Liu, Yonggang
    Zhang, Yuanjian
    Chen, Zheng
    ENERGY, 2023, 279
  • [38] Eco-driving for connected automated hybrid electric vehicles in learning-enabled layered transportation systems
    Yan, Su
    Fang, Jiayi
    Yang, Chao
    Chen, Ruihu
    Liu, Hui
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2025, 142
  • [39] Hybrid Reinforcement Learning-Based Eco-Driving Strategy for Connected and Automated Vehicles at Signalized Intersections
    Bai, Zhengwei
    Hao, Peng
    Shangguan, Wei
    Cai, Baigen
    Barth, Matthew J.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 15850 - 15863
  • [40] Design of a cooperative eco-driving rail control system: an experimental study
    S. La Delfa
    S. Enjalbert
    P. Polet
    F. Vanderhaegen
    Cognition, Technology & Work, 2021, 23 : 285 - 297