Acoustic-assisted centrifugal microfluidics for particle/cell separation

被引:4
作者
Zaheri-Ghannad, Soroush [1 ]
Kordzadeh-Kermani, Vahid [2 ]
Madadelahi, Masoud [3 ]
机构
[1] Isfahan Univ Technol, Dept Mech Engn, Esfahan 8415683111, Iran
[2] Iran Univ Sci & Technol, Dept Chem Engn, Res Lab Adv Separat Proc, Tehran 1684613114, Iran
[3] Tecnol Monterrey, Sch Engn & Sci, Monterrey 64849, NL, Mexico
关键词
Lab-on-a-disc; Centrifugal microfluidics; Acoustophoresis; Microparticles; Surface acoustic waves; Piezoelectric; DRIVEN; SIZE;
D O I
10.1016/j.cep.2024.109803
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The process of microparticle manipulation using acoustic waves within microfluidic devices is called acoustophoresis. This research focuses on a new approach for concentrating and categorizing microparticles using an integrated acoustic centrifugal microfluidic system with standing surface acoustic waves (SSAWs) and centrifugal forces. The study employs a rectangular microchannel with multiple inlets and outlets placed on an electrified lab -on -a -disc (eLOD) device subjected to SSAWs, guiding microparticles radially. Various physical parameters such as distance from the center of rotation, lateral displacement, tilting angle, microchannel dimensions, microparticle size, disc rotation speed, and applied voltage to the piezoelectric were simulated to assess microparticle focusing. The results indicate that adjusting lateral displacement and tilting angle can direct microparticles toward desired outlets. Enhanced focusing is achievable at low rotation speeds with higher applied voltage and narrower microchannel widths. The system ' s potential for classifying circulating tumor cells (CTCs) and white blood cells (WBCs) based on volume and density differences was also demonstrated. This acoustic eLOD device offers an efficient means for manipulating micro- and bioparticles.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Two-Step Acoustophoresis Separation of Live Tumor Cells from Whole Blood [J].
Anand, Eva Undvall ;
Magnusson, Cecilia ;
Lenshof, Andreas ;
Ceder, Yvonne ;
Lilja, Hans ;
Laurell, Thomas .
ANALYTICAL CHEMISTRY, 2021, 93 (51) :17076-17085
[2]   Droplet and Particle Generation on Centrifugal Microfluidic Platforms: A Review [J].
Azimi-Boulali, Javid ;
Madadelahi, Masoud ;
Madou, Marc J. ;
Martinez-Chapa, Sergio O. .
MICROMACHINES, 2020, 11 (06) :1-34
[3]   Numerical and experimental analysis of a hybrid material acoustophoretic device for manipulation of microparticles [J].
Barani, Alireza ;
Mosaddegh, Peiman ;
Javanmard, Shaghayegh Haghjooy ;
Sepehrirahnama, Shahrokh ;
Sanati-Nezhad, Amir .
SCIENTIFIC REPORTS, 2021, 11 (01)
[4]   Acoustofluidics 2: Perturbation theory and ultrasound resonance modes [J].
Bruus, Henrik .
LAB ON A CHIP, 2012, 12 (01) :20-28
[5]   Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves [J].
Destgeer, Ghulam ;
Sung, Hyung Jin .
LAB ON A CHIP, 2015, 15 (13) :2722-2738
[6]   Submicron separation of microspheres via travelling surface acoustic waves [J].
Destgeer, Ghulam ;
Ha, Byung Hang ;
Jung, Jin Ho ;
Sung, Hyung Jin .
LAB ON A CHIP, 2014, 14 (24) :4665-4672
[7]   Recent advances in acoustofluidic separation technology in biology [J].
Fan, Yanping ;
Wang, Xuan ;
Ren, Jiaqi ;
Lin, Francis ;
Wu, Jiandong .
MICROSYSTEMS & NANOENGINEERING, 2022, 8 (01)
[8]   Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation [J].
Farasat, Malihe ;
Aalaei, Ehsan ;
Ronizi, Saeed Kheirati ;
Bakhshi, Atin ;
Mirhosseini, Shaghayegh ;
Zhang, Jun ;
Nam-Trung Nguyen ;
Kashaninejad, Navid .
BIOSENSORS-BASEL, 2022, 12 (07)
[9]   Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics [J].
Friend, James ;
Yeo, Leslie Y. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :647-704
[10]  
Go DB, 2017, ANAL METHODS-UK, V9, P4112, DOI [10.1039/C7AY00690J, 10.1039/c7ay00690j]