Enhancement of catalytic activity in CO2 methanation in Ni-based catalysts supported on delaminated ITQ-6 zeolite

被引:1
|
作者
Machado-Silva, R. B. [1 ]
Da Costa-Serra, J. F. [1 ]
Chica, A. [1 ]
机构
[1] Univ Politecn Valencia, Consejo Super Invest Cient, Inst Tecnol Quim, Avd Naranjos S-N, Valencia 46022, Spain
关键词
ITQ-6; zeolite; Ferrierite zeolite; CO2; methanation; Catalysis; Nickel nanoparticles; FISCHER-TROPSCH SYNTHESIS; CARBON-DIOXIDE; HYDROGENATION; MECHANISMS; CH4; HYDROCARBONS; INSIGHTS; SITES; ACID; SIZE;
D O I
10.1016/j.jcat.2024.115609
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ni-based catalysts supported on delaminated ITQ-6 zeolite with different Si/Al ratios, 30 and infinity, were tested in the methanation of CO2 and CO. ITQ-6 supports exhibited high surface areas (> 590 m(2)/g), and the catalysts based on them presented elevated CO2 and CO conversion values, turnover frequencies (TOF), and CH4 selectivity (> 90 %). Comparing the ITQ-6 catalyst and its precursor ferrierite (FER)-based catalyst, H-2-chemisorption results confirmed higher metallic dispersion for the former, which resulted in improved H-2 uptake and efficient interaction of reaction intermediates via the associative pathway. Combined kinetic studies indicated that their higher available metallic surface contributed to lower apparent activation energies towards CH4 formation, accounting for the higher selectivity values. A 15 wt% Ni-based catalyst supported on ITQ-6 zeolite (Si/Al = 30) exhibited catalytic results (X-CO2 = 79 % y S-CH4 = 98 %) comparable or even superior to some of the best zeolite-based catalysts reported so far.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Highly stable Ni-based catalysts derived from LDHs supported on zeolite for CO2 methanation
    Zhang, Fanying
    Lu, Bin
    Sun, Peiqin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (32) : 16183 - 16192
  • [2] Effect of support on the catalytic activity of supported Ni-Fe catalysts for the CO2 methanation reaction
    Pandey, Dharmendra
    Deo, Goutam
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2016, 33 : 99 - 107
  • [3] Effects of molybdenum addition to activated carbon supported Ni-based catalysts for CO2 methanation
    Akpasi, Stephen Okiemute
    Isa, Yusuf Makarfi
    Mahlangu, Thembisile Patience
    Kiambi, Sammy Lewis
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2024, 14 (01) : 152 - 167
  • [4] VOx promoted Ni catalysts supported on the modified bentonite for CO and CO2 methanation
    Lu, Xiaopeng
    Gu, Fangna
    Liu, Qing
    Gao, Jiajian
    Liu, Youjun
    Li, Huifang
    Jia, Lihua
    Xu, Guangwen
    Zhong, Ziyi
    Su, Fabing
    FUEL PROCESSING TECHNOLOGY, 2015, 135 : 34 - 46
  • [5] Identifying the key structural features of Ni-based catalysts for the CO2 methanation reaction
    Li, Zhi-Xin
    Fu, Xin-Pu
    Ma, Chao
    Wang, Wei -Wei
    Liu, Jin-Cheng
    Jia, Chun -Jiang
    JOURNAL OF CATALYSIS, 2024, 436
  • [6] Bimetallic Ni-Based Catalysts for CO2 Methanation: A Review
    Tsiotsias, Anastasios I.
    Charisiou, Nikolaos D.
    Yentekakis, Ioannis V.
    Goula, Maria A.
    NANOMATERIALS, 2021, 11 (01) : 1 - 34
  • [7] CO2 methanation over the Ni-based catalysts supported on nano-CeO2 with varied morphologies
    Bian, Yufang
    Xu, Chunying
    Wen, Xueying
    Xu, Leilei
    Cui, Yan
    Wang, Shuhan
    Wu, Cai-e
    Qiu, Jian
    Cheng, Ge
    Chen, Mindong
    FUEL, 2023, 331
  • [8] Zeolite-Supported Ni Catalysts for CO2Methanation: Effect of Zeolite Structure and Si/Al Ratio
    Francisco Costa-Serra, Javier
    Cerda-Moreno, Cristina
    Chica, Antonio
    APPLIED SCIENCES-BASEL, 2020, 10 (15):
  • [9] Cobalt-doped Ni-based catalysts for low-temperature CO2 methanation
    Guo, Lei
    Zhang, Tong
    Qiu, Juan
    Bai, Jing
    Li, Zhongrui
    Wang, Hanying
    Cai, Xiaolong
    Yang, Yonglin
    Xu, Yunhua
    RENEWABLE ENERGY, 2024, 236
  • [10] Facilely fabricating highly dispersed Ni-based catalysts supported on mesoporous MFI nanosponge for CO2 methanation
    Yang, Haoming
    Xu, Leilei
    Chen, Mindong
    Lv, Chufei
    Cui, Yan
    Wen, Xueying
    Wu, Cai-e
    Yang, Bo
    Miao, Zhichao
    Hu, Xun
    Shou, Qinghui
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 302