Geometric Properties Connected with a Certain Multiplier Integral q-Analogue Operator

被引:2
作者
Ali, Ekram E. [1 ,2 ]
Oros, Georgia Irina [3 ]
El-Ashwah, Rabha M. [4 ]
Kota, Wafaa Y. [4 ]
Albalahi, Abeer M. [1 ]
机构
[1] Univ Hail, Fac Sci, Dept Math, Hail 81451, Saudi Arabia
[2] Port Said Univ, Fac Sci, Dept Math & Comp Sci, Port Said 42521, Egypt
[3] Univ Oradea, Dept Math & Comp Sci, Oradea 410087, Romania
[4] Damietta Univ, Fac Sci, Dept Math, New Damietta 34517, Egypt
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 07期
关键词
q-derivative operator; analytic functions; starlikeness; convolution; differential subordination; q-analogue multiplier operator; q-analogue Noor integral operator; coefficient estimates; UNIVALENT-FUNCTIONS; ANALYTIC-FUNCTIONS; SUBCLASSES;
D O I
10.3390/sym16070863
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The topic concerning the introduction and investigation of new classes of analytic functions using subordination techniques for obtaining certain geometric properties alongside coefficient estimates and inclusion relations is enriched by the results of the present investigation. The prolific tools of quantum calculus applied in geometric function theory are employed for the investigation of a new class of analytic functions introduced by applying a previously defined generalized q-integral operator and the concept of subordination. Investigations are conducted on the new class, including coefficient estimates, integral representation for the functions of the class, linear combinations, forms of the weighted and arithmetic means involving functions from the class, and the estimation of the integral means results.
引用
收藏
页数:12
相关论文
共 38 条
[11]  
Bulboaca T., 2005, Differential Subordinations and Superordinations: Recent Results
[12]   Subordination results for some subclasses of analytic functions using generalized q-Dziok-Srivastava-Catas operator [J].
El-Ashwah, R. M. .
FILOMAT, 2023, 37 (06) :1855-1867
[13]  
Ernst T., 2000, U.U.D.M. Report 16
[14]  
EXTON H., 1983, q-Hypergeometric Functions and Applications
[15]   Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras [J].
Frenkel, E ;
Mukhin, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 216 (01) :23-57
[16]   Some systems of multivariable orthogonal q-Racah polynomials [J].
Gasper, George ;
Rahman, Mizan .
RAMANUJAN JOURNAL, 2007, 13 (1-3) :389-405
[17]   On a class of analytic functions related to conic domains involving q-calculus [J].
Govindaraj, M. ;
Sivasubramanian, S. .
ANALYSIS MATHEMATICA, 2017, 43 (03) :475-487
[18]   q-difference operators for orthogonal polynomials [J].
Ismail, Mourad E. H. ;
Simeonov, Plamen .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (03) :749-761
[19]  
JACKSON F. H., 1910, Quart. J. Pure Appl. Math., V41, P193
[20]  
Jackson F. H., 1908, Trans. Royal Soc. Edinburgh, V46, P253, DOI DOI 10.1017/S0080456800002751