Design Principles for Immunomodulatory Biomaterials

被引:8
作者
Oluwole, Samuel Abidemi [1 ]
Weldu, Welday Desta [1 ]
Jayaraman, Keerthana [1 ]
Barnard, Kelsie Amanda [1 ]
Agatemor, Christian [1 ,2 ,3 ]
机构
[1] Univ Miami, Dept Chem, Coral Gables, FL 33124 USA
[2] Univ Miami, Dept Biol, Coral Gables, FL 33124 USA
[3] Univ Miami Hlth Syst, Sylvester Comprehens Canc Ctr, Miami, FL 33136 USA
关键词
biomaterials; polymers; nanomaterials; immunotherapy; immunomodulation; immunomodulators; MESOPOROUS SILICA NANOPARTICLES; BOVINE SERUM-ALBUMIN; KEYHOLE LIMPET HEMOCYANIN; POLYETHYLENE-GLYCOL; IMMUNE-RESPONSE; DENDRITIC CELLS; IN-VITRO; IMMUNOLOGICAL-PROPERTIES; IMMUNOGENIC PROPERTIES; THERAPEUTIC-EFFICACY;
D O I
10.1021/acsabm.4c00537
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The immune system is imperative to the survival of all biological organisms. A functional immune system protects the organism by detecting and eliminating foreign and host aberrant molecules. Conversely, a dysfunctional immune system characterized by an overactive or weakened immune system causes life-threatening autoimmune or immunodeficiency diseases. Therefore, a critical need exists to develop technologies that regulate the immune system to ensure homeostasis or treat several diseases. Accumulating evidence shows that biomaterials-artificial materials (polymers, metals, ceramics, or engineered cells and tissues) that interact with biological systems-can trigger immune responses, offering a materials science-based strategy to modulate the immune system. This Review discusses the expanding frontiers of biomaterial-based immunomodulation, focusing on principles for designing these materials. This Review also presents examples of immunomodulatory biomaterials, which include polymers and metal- and carbon-based nanomaterials, capable of regulating the innate and adaptive immune systems.
引用
收藏
页码:8059 / 8075
页数:17
相关论文
共 200 条
[1]   Biomimetic design of fibril-forming non-immunogenic collagen like proteins for tissue engineering [J].
Aarthy, Mayilvahanan ;
Hemalatha, Thiagarajan ;
Suryalakshmi, Pandurangan ;
Vinoth, Vetrivel ;
Mercyjayapriya, Jebakumar ;
Shanmugam, Ganesh ;
Ayyadurai, Niraikulam .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 266
[2]   Sandwich Complex- Containing Macromolecules: Property Tunability Through Versatile Synthesis [J].
Abd-El-Aziz, Alaa S. ;
Agatemor, Christian ;
Etkin, Nola .
MACROMOLECULAR RAPID COMMUNICATIONS, 2014, 35 (05) :513-559
[3]  
ABUCHOWSKI A, 1977, J BIOL CHEM, V252, P3582
[4]  
ABUCHOWSKI A, 1977, J BIOL CHEM, V252, P3578
[5]   Biomaterials as Local Niches for Immunomodulation [J].
Adu-Berchie, Kwasi ;
Mooney, David J. .
ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (09) :1749-1760
[6]  
Agatemor C., 2023, FUNDAMENTALS INORGAN, P194
[7]   The role of lipid components in lipid nanoparticles for vaccines and gene therapy [J].
Albertsen, Camilla Hald ;
Kulkarni, Jayesh A. ;
Witzigmann, Dominik ;
Lind, Marianne ;
Petersson, Karsten ;
Simonsen, Jens B. .
ADVANCED DRUG DELIVERY REVIEWS, 2022, 188
[8]   Latent, Immunosuppressive Nature of Poly(lactic-co-glycolic acid) Microparticles [J].
Allen, Riley P. ;
Bolandparvaz, Amir ;
Ma, Jeffrey A. ;
Manickam, Vishal A. ;
Lewis, Jamal S. .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (03) :900-918
[9]   PREVENTION OF PROTEIN ADSORPTION AND PLATELET-ADHESION ON SURFACES BY PEO PPO PEO TRIBLOCK COPOLYMERS [J].
AMIJI, M ;
PARK, K .
BIOMATERIALS, 1992, 13 (10) :682-692
[10]   Zwitterionic Polysulfobetaine Coating and Antiplatelet Liposomes Reduce Fouling in Artificial Lung Circuits [J].
Amoako, Kagya ;
Kaufman, Rikki ;
Haddad, Waad A. M. ;
Pusey, Romario ;
Saniesetty, Venkata H. K. ;
Sun, Hao ;
Skoog, David ;
Cook, Keith .
MACROMOLECULAR BIOSCIENCE, 2023, 23 (04)