Review of Recent Advances in Gaussian Process Regression Methods

被引:0
作者
Lyu, Chenyi [1 ]
Liu, Xingchi [1 ]
Mihaylova, Lyudmila [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, England
来源
ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2022 | 2024年 / 1454卷
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Gaussian process; factorisation; covariance matrix; hierarchical off-diagonal matrix; low-rank approximation;
D O I
10.1007/978-3-031-55568-8_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gaussian process (GP) methods have been widely studied recently, especially for large-scale systems with big data and even more extreme cases when data is sparse. Key advantages of these methods consist in: 1) the ability to provide inherent ways to assess the impact of uncertainties (especially in the data, and environment) on the solutions, 2) have efficient factorisation-based implementations and 3) can be implemented easily in distributed manners and hence provide scalable solutions. This paper reviews the recently developed key factorised GP methods such as the hierarchical off-diagonal low-rank approximation methods and GP with Kronecker structures. An example illustrates the performance of these methods with respect to accuracy and computational complexity.
引用
收藏
页码:226 / 237
页数:12
相关论文
共 33 条
[1]  
Adam V, 2020, PR MACH LEARN RES, V108, P2874
[2]  
Ambikasaran S., 2013, FAST ALGORITHMS DENS
[3]   Fast Direct Methods for Gaussian Processes [J].
Ambikasaran, Sivaram ;
Foreman-Mackey, Daniel ;
Greengard, Leslie ;
Hogg, David W. ;
O'Neil, Michael .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :252-265
[4]   A fast block low-rank dense solver with applications to finite-element matrices [J].
Aminfar, AmirHossein ;
Ambikasaran, Sivaram ;
Darve, Eric .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 304 :170-188
[5]   SINGULAR VALUE DECOMPOSITION (SVD) IMAGE-CODING [J].
ANDREWS, HC ;
PATTERSON, CL .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1976, 24 (04) :425-432
[6]  
[Anonymous], 2011, Gaussian process regression analysis for functional data
[7]   Matrices with Hierarchical Low-Rank Structures [J].
Ballani, Jonas ;
Kressner, Daniel .
EXPLOITING HIDDEN STRUCTURE IN MATRIX COMPUTATIONS: ALGORITHMS AND APPLICATIONS, 2016, 2173 :161-209
[8]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[9]  
Borm S., 2003, LECT NOTES, V21, P2003
[10]  
Burt DR, 2019, PR MACH LEARN RES, V97