RICCI SOLITONS AND RICCI BI-CONFORMAL VECTOR FIELDS ON THE LIE GROUP H2 x R

被引:3
作者
Azami, Shahroud [1 ]
Jafari, Mehdi [2 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin, Iran
[2] Payame Noor Univ, Dept Math, POB 193954697, Tehran, Iran
关键词
conformal vector fields; Lie group; Riemannian metrics; QUASI-EINSTEIN METRICS;
D O I
10.1016/S0034-4877(24)00028-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present paper, we investigate the 3 -dimensional Lie group ( H-2 x R, g) where g is a left -invariant Riemannian metric and we determine the Ricci solitons and Ricci bi-conformal vector fields on it.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 14 条
[1]  
ATASHPEYKAR P., 2020, Journal of Finsler Geometry and its Applications, V1, P105
[2]   RICCI SOLITONS OF THE H2 x R LIE GROUP [J].
Belarbi, Lakehal .
ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (01) :157-163
[3]  
Calin C, 2010, B MALAYS MATH SCI SO, V33, P361
[4]  
Carroll S. M, 2004, Spacetime and geometry: an introduction to general relativity, P133
[5]  
Chave T, 1996, HELV PHYS ACTA, V69, P344
[6]   On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties [J].
Chave, T ;
Valent, G .
NUCLEAR PHYSICS B, 1996, 478 (03) :758-778
[7]   Kerr-Schild symmetries [J].
Coll, B ;
Hildebrandt, SR ;
Senovilla, JMM .
GENERAL RELATIVITY AND GRAVITATION, 2001, 33 (04) :649-670
[8]  
De UC, 2021, V2, P61, DOI [10.22060/ajmc.2021.19220.1043, 10.22060/ajmc.2021.19220.1043, DOI 10.22060/AJMC.2021.19220.1043]
[9]  
Deshmukh S, 2017, Arab Journal of Mathematical Sciences, V23, P44, DOI 10.1016/j.ajmsc.2016.09.003
[10]   Bi-conformal vector fields and their applications [J].
García-Parrado, A ;
Senovilla, JMM .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (08) :2153-2177