2D Dielectric Enhancement of Ion Coulomb Drag Amplification in Nanofluidics

被引:0
作者
Xiong, Mingye [1 ,2 ]
Leburton, Jean-Pierre [1 ,2 ,3 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Nick Holonyak Jr Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
关键词
GRAPHENE; SELECTIVITY; CONSTANT;
D O I
10.1021/acs.jpcc.4c01734
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate ion-electron Coulomb drag in 2D nanofluidic slits using a generic physical model based on the Boltzmann transport formalism. The emphasis is placed on the fluid, oxide, and semiconductor dielectric constants as well as on the geometry and oxide thickness to maximize the electronic drag current and power output. Our model confirms electronic drag current amplification predicted in silicon nanochannels and shows that optimum amplification is achieved for an oxide dielectric constant equal to the geometric mean of the fluid and semiconductor constants, as well as with thin oxide layers while maintaining high surface carrier concentrations in semiconducting layers surrounding the 2D nanoslit. Our analysis, which provides guidelines for 2D slit design optimization, also shows that nanoslits made of 2D materials like graphene combined with thin oxide and optimized dielectric constants enhance drag current amplification over conventional Si/SiO2 nanochannels.
引用
收藏
页码:9722 / 9729
页数:8
相关论文
共 27 条
[1]   Nanofluidics coming of age [J].
Bocquet, Lyderic .
NATURE MATERIALS, 2020, 19 (03) :254-256
[2]   Inducing Electric Current in Graphene Using Ionic Flow [J].
Chen, Fanfan ;
Zhao, Yunhong ;
Saxena, Anshul ;
Zhao, Chunxiao ;
Niu, Mengdi ;
Aluru, Narayana R. ;
Feng, Jiandong .
NANO LETTERS, 2023, 23 (10) :4464-4470
[3]   Quantum Feedback at the Solid-Liquid Interface: Flow-Induced Electronic Current and Its Negative Contribution to Friction [J].
Coquinot, Baptiste ;
Bocquet, Lyderic ;
Kavokine, Nikita .
PHYSICAL REVIEW X, 2023, 13 (01)
[4]   Anomalously low dielectric constant of confined water [J].
Fumagalli, L. ;
Esfandiar, A. ;
Fabregas, R. ;
Hu, S. ;
Ares, P. ;
Janardanan, A. ;
Yang, Q. ;
Radha, B. ;
Taniguchi, T. ;
Watanabe, K. ;
Gomila, G. ;
Novoselov, K. S. ;
Geim, A. K. .
SCIENCE, 2018, 360 (6395) :1339-+
[5]   Graphene as a subnanometre trans-electrode membrane [J].
Garaj, S. ;
Hubbard, W. ;
Reina, A. ;
Kong, J. ;
Branton, D. ;
Golovchenko, J. A. .
NATURE, 2010, 467 (7312) :190-U73
[6]   Carbon nanotube flow sensors [J].
Ghosh, S ;
Sood, AK ;
Kumar, N .
SCIENCE, 2003, 299 (5609) :1042-1044
[7]   Electrolytic transport through a synthetic nanometer-diameter pore [J].
Ho, C ;
Qiao, R ;
Heng, JB ;
Chatterjee, A ;
Timp, RJ ;
Aluru, NR ;
Timp, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (30) :10445-10450
[8]  
Jackson J.D., 1999, CLASSICAL ELECTRODYN, VThird
[9]   COULOMB DRAG BETWEEN PARALLEL 2-DIMENSIONAL ELECTRON-SYSTEMS [J].
JAUHO, AP ;
SMITH, H .
PHYSICAL REVIEW B, 1993, 47 (08) :4420-4428
[10]   Alternative dielectrics to silicon dioxide for memory and logic devices [J].
Kingon, AI ;
Maria, JP ;
Streiffer, SK .
NATURE, 2000, 406 (6799) :1032-1038