CoFeNi twisted wire plus Al wire arc additive manufacturing of AlCoFeNi eutectic and near-eutectic high entropy alloys

被引:10
作者
Huang, Yifei [1 ,2 ]
Su, Chuanchu [1 ,2 ]
Lu, Haojie [1 ,2 ]
Wang, Yu [1 ,2 ]
Wang, Yanhu [1 ,2 ]
Chen, Xizhang [1 ,2 ]
机构
[1] Wenzhou Univ, Coll Mech & Elect Engn, Zhejiang Prov Key Lab Laser Proc Robot, Wenzhou 325035, Zhejiang, Peoples R China
[2] Wenzhou Univ, China Int Sci & Technol Cooperat Base Laser Proc R, Wenzhou 325035, Zhejiang, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2024年 / 30卷
基金
中国国家自然科学基金;
关键词
Dual -wire arc additive manufacturing; AlCoFeNi; Eutectic high entropy alloys; Microstructure; Mechanical properties; TENSILE DEFORMATION-BEHAVIOR; MECHANICAL-PROPERTIES; MICROSTRUCTURE; DUCTILITY; STRENGTH; DESIGN; SYSTEM; LASER;
D O I
10.1016/j.jmrt.2024.06.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper is the first attempt to fabricate eutectic high entropy alloy (EHEA) using dual -wire arc additive manufacturing (D-WAAM) technology with twisted wire + single wire. Using CoFeNi twisted wire and Al single wire as raw materials, the eutectic point was determined by adjusting the Al content over a wide range by adjusting the speed of the Al single wire. We designed and fabricated Al 19 Co 25 Fe 25 Ni 31 hypo-eutectic, Al 20 Co 22 Fe 30 Ni 28 eutectic, and Al 21 Co 22 Fe 29 Ni 28 hyper-eutectic high entropy alloys, and conducted in-depth research on their mechanical properties and microstructure. With increasing Al content, the microstructural changes from hypo-eutectic to hyper-eutectic, the strength of the alloy increases, and the plasticity of the alloy decreases. The fabricated Al 20 Co 22 Fe 30 Ni 28 EHEA shows the best strength-plastic balance. This characteristic is mainly attributed to the eutectic alloy exhibiting a dual-phase lamellar microstructure consisting of an ordered face-centered cubic (FCC) L1 2 phase with a volume fraction of 56.9% and an ordered body-centered cubic (BCC) B2 phase with a volume fraction of 43.1%. Because the alloy contains both the hard B2 phase and the tough L1 2 phase, the room temperature tensile strength reaches 1041 MPa, and the plasticity reaches 14.9%, which is higher than those of other EHEAs fabricated by casting and arc melting. The excellent strength and plasticity of these materials show great potential in engineering applications. This approach not only expands the existing additive manufacturing technology but also provides new ideas for the additive manufacturing of EHEAs.
引用
收藏
页码:9237 / 9247
页数:11
相关论文
共 56 条
[1]   THE LAW OF MIXTURES APPLIED TO THE PLASTIC-DEFORMATION OF 2-PHASE ALLOYS OF COARSE MICROSTRUCTURES [J].
CHO, K ;
GURLAND, J .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1988, 19 (08) :2027-2040
[2]   Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J].
Chuang, Ming-Hao ;
Tsai, Ming-Hung ;
Wang, Woei-Ren ;
Lin, Su-Jien ;
Yeh, Jien-Wei .
ACTA MATERIALIA, 2011, 59 (16) :6308-6317
[3]   Hetero-deformation promoted strengthening and toughening in BCC rich eutectic and near eutectic high entropy alloys [J].
Chung, D. H. ;
Lee, J. ;
He, Q. F. ;
Kim, Y. K. ;
Lim, K. R. ;
Kim, H. S. ;
Yang, Y. ;
Na, Y. S. .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 146 :1-9
[4]   High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy) [J].
Daoud, H. M. ;
Manzoni, A. M. ;
Wanderka, N. ;
Glatzel, U. .
JOM, 2015, 67 (10) :2271-2277
[5]   Exploring the design of eutectic or near-eutectic multicomponent alloys: From binary to high entropy alloys [J].
Ding ZhaoYi ;
He QuanFeng ;
Yang Yong .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2018, 61 (02) :159-167
[6]   On the development of pseudo-eutectic AlCoCrFeNi2.1 high entropy alloy using Powder-bed Arc Additive Manufacturing (PAAM) process [J].
Dong, Bosheng ;
Wang, Zhiyang ;
Pan, Zengxi ;
Muransky, Ondrej ;
Shen, Chen ;
Reid, Mark ;
Wu, Bintao ;
Chen, Xizhang ;
Li, Huijun .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802
[7]   Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J].
Gao, Xuzhou ;
Lu, Yiping ;
Zhang, Bo ;
Liang, Ningning ;
Wu, Guanzhong ;
Sha, Gang ;
Liu, Jizi ;
Zhao, Yonghao .
ACTA MATERIALIA, 2017, 141 :59-66
[8]   Selective laser melting of dense and crack-free AlCoCrFeNi2.1 eutectic high entropy alloy: Synergizing strength and ductility [J].
He, Lin ;
Wu, Shiwei ;
Dong, Anping ;
Tang, Haibin ;
Du, Dafan ;
Zhu, Guoliang ;
Sun, Baode ;
Yan, Wentao .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 117 (133-145) :133-145
[9]   Simultaneously enhanced strength-ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing [J].
Huang, Liufei ;
Sun, Yaoning ;
Chen, Na ;
Luan, Hengwei ;
Le, Guomin ;
Liu, Xue ;
Ji, Yaqi ;
Lu, Yiping ;
Liaw, Peter K. ;
Yang, Xiaoshan ;
Zhou, Yuzhao ;
Li, Jinfeng .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 830
[10]   Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys [J].
Huo, Wenyi ;
Zhou, Hui ;
Fang, Feng ;
Xie, Zonghan ;
Jiang, Jianqing .
MATERIALS & DESIGN, 2017, 134 :226-233