Evaluating ChatGPT's Performance in Answering Questions About Allergic Rhinitis and Chronic Rhinosinusitis

被引:6
作者
Ye, Fan [1 ,2 ]
Zhang, He [1 ,2 ]
Luo, Xin [1 ,2 ]
Wu, Tong [1 ,2 ]
Yang, Qintai [1 ,2 ,3 ,4 ]
Shi, Zhaohui [1 ,2 ,3 ,4 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Otolaryngol Head & Neck Surg, 600 Tianhe Rd, Guangzhou 510630, Peoples R China
[2] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Allergy, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Affiliated Hosp 3, Naso Orbital Maxilla & Skull Base Ctr, Guangzhou, Peoples R China
[4] Key Lab Airway Inflammatory Dis Res & Innovat Tech, Guangzhou, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
allergic rhinitis; artificial intelligence; ChatGPT; chronic rhinosinusitis; INTERNATIONAL CONSENSUS STATEMENT; HEALTH-CARE; IMPACT;
D O I
10.1002/ohn.832
中图分类号
R76 [耳鼻咽喉科学];
学科分类号
100213 ;
摘要
ObjectiveThis study aims to evaluate the accuracy of ChatGPT in answering allergic rhinitis (AR) and chronic rhinosinusitis (CRS) related questions.Study DesignThis is a cross-sectional study.SettingEach question was inputted as a separate, independent prompt.MethodsResponses to AR (n = 189) and CRS (n = 242) related questions, generated by GPT-3.5 and GPT-4, were independently graded for accuracy by 2 senior rhinology professors, with disagreements adjudicated by a third reviewer.ResultsOverall, ChatGPT demonstrated a satisfactory performance, accurately answering over 80% of questions across all categories. Specifically, GPT-4.0's accuracy in responding to AR-related questions significantly exceeded that of GPT-3.5, but distinction not evident in CRS-related questions. Patient-originated questions had a significantly higher accuracy compared to doctor-originated questions when utilizing GPT-4.0 to respond to AR-related questions. This discrepancy was not observed with GPT-3.5 or in the context of CRS-related questions. Across different types of content, ChatGPT excelled in covering basic knowledge, prevention, and emotion for AR and CRS. However, it experienced challenges when addressing questions about recent advancements, a trend consistent across both GPT-3.5 and GPT-4.0 iterations. Importantly, the accuracy of responses remained unaffected when questions were posed in Chinese.ConclusionOur findings suggest ChatGPT's capability to convey accurate information for AR and CRS patients, and offer insights into its performance across various domains, guiding its utilization and improvement.
引用
收藏
页码:571 / 577
页数:7
相关论文
共 17 条
[1]   Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum [J].
Ayers, John W. ;
Poliak, Adam ;
Dredze, Mark ;
Leas, Eric C. ;
Zhu, Zechariah ;
Kelley, Jessica B. ;
Faix, Dennis J. ;
Goodman, Aaron M. ;
Longhurst, Christopher A. ;
Hogarth, Michael ;
Smith, Davey M. .
JAMA INTERNAL MEDICINE, 2023, 183 (06) :589-596
[2]   Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 Revision [J].
Brozek, Jan L. ;
Bousquet, Jean ;
Baena-Cagnani, Carlos E. ;
Bonini, Sergio ;
Canonica, G. Walter ;
Casale, Thomas B. ;
van Wijk, Roy Gerth ;
Ohta, Ken ;
Zuberbier, Torsten ;
Schuenemann, Holger J. .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2010, 126 (03) :466-476
[3]   Assessing health literacy in rhinologic patients [J].
Fischer, Jakob L. ;
Watson, Nora L. ;
Tolisano, Anthony M. ;
Riley, Charles A. .
INTERNATIONAL FORUM OF ALLERGY & RHINOLOGY, 2021, 11 (04) :818-821
[4]   Burden of illness, medication adherence, and unmet medical needs in Japanese patients with atopic dermatitis: A retrospective analysis of a cross-sectional questionnaire survey [J].
Kamei, Kazumasa ;
Hirose, Tomohiro ;
Yoshii, Noritoshi ;
Tanaka, Akio .
JOURNAL OF DERMATOLOGY, 2021, 48 (10) :1491-1498
[5]  
Kojima T, 2022, ADV NEUR IN
[6]   Asthma patients' assessments of health care and medical decision making: The role of health literacy [J].
Mancuso, CA ;
Rincon, M .
JOURNAL OF ASTHMA, 2006, 43 (01) :41-44
[7]   International Consensus Statement on Allergy and Rhinology: Rhinosinusitis [J].
Orlandi, Richard R. ;
Kingdom, Todd T. ;
Hwang, Peter H. ;
Smith, Timothy L. ;
Alt, Jeremiah A. ;
Baroody, Fuad M. ;
Batra, Pete S. ;
Bernal-Sprekelsen, Manuel ;
Bhattacharyya, Neil ;
Chandra, Rakesh K. ;
Chiu, Alexander ;
Citardi, Martin J. ;
Cohen, Noam A. ;
DelGaudio, John ;
Desrosiers, Martin ;
Dhong, Hun-Jong ;
Douglas, Richard ;
Ferguson, Berrylin ;
Fokkens, Wytske J. ;
Georgalas, Christos ;
Goldberg, Andrew ;
Gosepath, Jan ;
Hamilos, Daniel L. ;
Han, Joseph K. ;
Harvey, Richard ;
Hellings, Peter ;
Hopkins, Claire ;
Jankowski, Roger ;
Javer, Amin R. ;
Kern, Robert ;
Kountakis, Stilianos ;
Kowalski, Marek L. ;
Lane, Andrew ;
Lanza, Donald C. ;
Lebowitz, Richard ;
Lee, Heung-Man ;
Lin, Sandra Y. ;
Lund, Valerie ;
Luong, Amber ;
Mann, Wolf ;
Marple, Bradley F. ;
McMains, Kevin C. ;
Metson, Ralph ;
Naclerio, Robert ;
Nayak, Jayakar V. ;
Otori, Nobuyoshi ;
Palmer, James N. ;
Parikh, Sanjay R. ;
Passali, Desiderio ;
Peters, Anju .
INTERNATIONAL FORUM OF ALLERGY & RHINOLOGY, 2016, 6 :S22-S209
[8]   Artificial intelligence-based chatbot patient information on common retinal diseases using ChatGPT [J].
Potapenko, Ivan ;
Boberg-Ans, Lars Christian ;
Hansen, Michael Stormly ;
Klefter, Oliver Niels ;
van Dijk, Elon H. C. ;
Subhi, Yousif .
ACTA OPHTHALMOLOGICA, 2023, 101 (07) :829-831
[9]   Health Literacy Impact on National Healthcare Utilization and Expenditure [J].
Rasu, Rafia S. ;
Bawa, Walter Agbor ;
Suminski, Richard ;
Snella, Kathleen ;
Warady, Bradley .
INTERNATIONAL JOURNAL OF HEALTH POLICY AND MANAGEMENT, 2015, 4 (11) :747-755
[10]   Association Between Electronic Health Record Time and Quality of Care Metrics in Primary Care [J].
Rotenstein, Lisa S. ;
Holmgren, A. Jay ;
Healey, Michael J. ;
Horn, Daniel M. ;
Ting, David Y. ;
Lipsitz, Stuart ;
Salmasian, Hojjat ;
Gitomer, Richard ;
Bates, David W. .
JAMA NETWORK OPEN, 2022, 5 (10)