A multi-omics systems vaccinology resource to develop and test computational models of immunity

被引:0
|
作者
Shinde, Pramod [1 ]
Soldevila, Ferran [1 ]
Reyna, Joaquin [1 ,2 ]
Aoki, Minori [1 ]
Rasmussen, Mikkel [1 ,3 ]
Willemsen, Lisa [1 ]
Kojima, Mari [1 ]
Ha, Brendan [1 ]
Greenbaum, Jason A. [1 ]
Overton, James A. [4 ]
Guzman-Orozco, Hector [1 ]
Nili, Somayeh [1 ]
Orfield, Shelby [1 ]
Gygi, Jeremy P. [5 ]
Antunes, Ricardo da Silva [1 ]
Sette, Alessandro [1 ,6 ]
Grant, Barry [7 ]
Olsen, Lars Ronn [3 ]
Konstorum, Anna [8 ]
Guan, Leying [9 ]
Ay, Ferhat [1 ,6 ]
Kleinstein, Steven H. [5 ,8 ]
Peters, Bjoern [1 ,6 ]
机构
[1] La Jolla Inst Immunol, Ctr Infect Dis & Vaccine Res, La Jolla, CA 92037 USA
[2] Univ Calif San Diego, Bioinformat & Syst Biol Grad Program, San Diego, CA USA
[3] Tech Univ Denmark, Dept Hlth Technol, Kongens Lyngby, Denmark
[4] Knocean Inc, 107 Quebec Ave, Toronto, ON M6P 2T3, Canada
[5] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT USA
[6] Univ Calif San Diego, Dept Med, San Diego, CA 92093 USA
[7] Univ Calif San Diego, Sch Biol Sci, Dept Mol Biol, La Jolla, CA USA
[8] Yale Univ, Sch Med, Dept Pathol, New Haven, CT USA
[9] Yale Sch Publ Hlth, Dept Biostat, New Haven, CT USA
来源
CELL REPORTS METHODS | 2024年 / 4卷 / 03期
关键词
ACELLULAR PERTUSSIS VACCINES; WHOLE-CELL; DISEASE; RESPONSES;
D O I
10.1016/j.crmeth.2024.100731
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Systems vaccinology studies have identified factors affecting individual vaccine responses, but comparing these findings is challenging due to varying study designs. To address this lack of reproducibility, we established a community resource for comparing Bordetella pertussis booster responses and to host annual contests for predicting patients' vaccination outcomes. We report here on our experiences with the "dry-run"prediction contest. We found that, among 20+ models adopted from the literature, the most successful model predicting vaccination outcome was based on age alone. This confirms our concerns about the reproducibility of conclusions between different vaccinology studies. Further, we found that, for newly trained models, handling of baseline information on the target variables was crucial. Overall, multiple co -inertia analysis gave the best results of the tested modeling approaches. Our goal is to engage community in these prediction challenges by making data and models available and opening a public contest in August 2024.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Defining NASH from a Multi-Omics Systems Biology Perspective
    Niu, Lili
    Sulek, Karolina
    Vasilopoulou, Catherine G.
    Santos, Alberto
    Wewer Albrechtsen, Nicolai J.
    Rasmussen, Simon
    Meier, Florian
    Mann, Matthias
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (20)
  • [42] Editorial: Computational methods for multi-omics data analysis in cancer precision medicine
    Piroozkhah, Moein
    Mazloomnejad, Radman
    Salehi, Zahra
    Nazemalhosseini-Mojarad, Ehsan
    FRONTIERS IN GENETICS, 2023, 14
  • [43] Editorial: Computational and systematic analysis of multi-omics data for drug discovery and development
    Guo, Shicheng
    Zhang, Dake
    Wang, Hu
    An, Qin
    Yu, Guangchuang
    Han, Junwei
    Jiang, Chunjie
    Huang, Jianfeng
    FRONTIERS IN MEDICINE, 2023, 10
  • [44] Editorial: Multi-omics and computational biology in horticultural plants: From genotype to phenotype
    Mondal, Suvendu
    Song, Hui
    Zhang, Liangsheng
    Cao, Yunpeng
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [45] Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies
    Kaja C. G. Berg
    Peter W. Eide
    Ina A. Eilertsen
    Bjarne Johannessen
    Jarle Bruun
    Stine A. Danielsen
    Merete Bjørnslett
    Leonardo A. Meza-Zepeda
    Mette Eknæs
    Guro E. Lind
    Ola Myklebost
    Rolf I. Skotheim
    Anita Sveen
    Ragnhild A. Lothe
    Molecular Cancer, 16
  • [46] Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies
    Berg, Kaja C. G.
    Eide, Peter W.
    Eilertsen, Ina A.
    Johannessen, Bjarne
    Bruun, Jarle
    Danielsen, Stine A.
    Bjornslett, Merete
    Meza-Zepeda, Leonardo A.
    Eknaes, Mette
    Lind, Guro E.
    Myklebost, Ola
    Skotheim, Rolf I.
    Sveen, Anita
    Lothe, Ragnhild A.
    MOLECULAR CANCER, 2017, 16
  • [47] PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data
    Hernandez-de-Diego, Rafael
    Tarazona, Sonia
    Martinez-Mira, Carlos
    Balzano-Nogueira, Leandro
    Furio-Tari, Pedro
    Pappas Jr, Georgios J.
    Conesa, Ana
    NUCLEIC ACIDS RESEARCH, 2018, 46 (W1) : W503 - W509
  • [48] Standardized and accessible multi-omics bioinformatics workflows through the NMDC EDGE resource
    Kelliher, Julia M.
    Xu, Yan
    Flynn, Mark C.
    Babinski, Michal
    Canon, Shane
    Cavanna, Eric
    Clum, Alicia
    Corilo, Yuri E.
    Fujimoto, Grant
    Giberson, Cameron
    Johnson, Leah Y. D.
    Li, Kaitlyn J.
    Li, Po-E
    Li, Valerie
    Lo, Chien-Chi
    Lynch, Wendi
    Piehowski, Paul
    Prime, Kaelan
    Purvine, Samuel
    Rodriguez, Francisca
    Roux, Simon
    Shakya, Migun
    Smith, Montana
    Sarrafan, Setareh
    Cholia, Shreyas
    Mccue, Lee Ann
    Mungall, Chris
    Hu, Bin
    Eloe-Fadrosh, Emiley A.
    Chain, Patrick S. G.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 3575 - 3583
  • [49] Optimization of cell lines as tumour models by integrating multi-omics data
    Zhao, Ning
    Liu, Yongjing
    Wei, Yunzhen
    Yan, Zichuang
    Zhang, Qiang
    Wu, Cheng
    Chang, Zhiqiang
    Xu, Yan
    BRIEFINGS IN BIOINFORMATICS, 2017, 18 (03) : 515 - 529
  • [50] Integrating machine learning and multi-omics analysis to develop an asparagine metabolism immunity index for improving clinical outcome and drug sensitivity in lung adenocarcinoma
    Li, Chunhong
    Mao, Yuhua
    Hu, Jiahua
    Su, Chunchun
    Li, Mengqin
    Tan, Haiyin
    IMMUNOLOGIC RESEARCH, 2024, : 1447 - 1469