A multi-omics systems vaccinology resource to develop and test computational models of immunity

被引:0
|
作者
Shinde, Pramod [1 ]
Soldevila, Ferran [1 ]
Reyna, Joaquin [1 ,2 ]
Aoki, Minori [1 ]
Rasmussen, Mikkel [1 ,3 ]
Willemsen, Lisa [1 ]
Kojima, Mari [1 ]
Ha, Brendan [1 ]
Greenbaum, Jason A. [1 ]
Overton, James A. [4 ]
Guzman-Orozco, Hector [1 ]
Nili, Somayeh [1 ]
Orfield, Shelby [1 ]
Gygi, Jeremy P. [5 ]
Antunes, Ricardo da Silva [1 ]
Sette, Alessandro [1 ,6 ]
Grant, Barry [7 ]
Olsen, Lars Ronn [3 ]
Konstorum, Anna [8 ]
Guan, Leying [9 ]
Ay, Ferhat [1 ,6 ]
Kleinstein, Steven H. [5 ,8 ]
Peters, Bjoern [1 ,6 ]
机构
[1] La Jolla Inst Immunol, Ctr Infect Dis & Vaccine Res, La Jolla, CA 92037 USA
[2] Univ Calif San Diego, Bioinformat & Syst Biol Grad Program, San Diego, CA USA
[3] Tech Univ Denmark, Dept Hlth Technol, Kongens Lyngby, Denmark
[4] Knocean Inc, 107 Quebec Ave, Toronto, ON M6P 2T3, Canada
[5] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT USA
[6] Univ Calif San Diego, Dept Med, San Diego, CA 92093 USA
[7] Univ Calif San Diego, Sch Biol Sci, Dept Mol Biol, La Jolla, CA USA
[8] Yale Univ, Sch Med, Dept Pathol, New Haven, CT USA
[9] Yale Sch Publ Hlth, Dept Biostat, New Haven, CT USA
来源
CELL REPORTS METHODS | 2024年 / 4卷 / 03期
关键词
ACELLULAR PERTUSSIS VACCINES; WHOLE-CELL; DISEASE; RESPONSES;
D O I
10.1016/j.crmeth.2024.100731
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Systems vaccinology studies have identified factors affecting individual vaccine responses, but comparing these findings is challenging due to varying study designs. To address this lack of reproducibility, we established a community resource for comparing Bordetella pertussis booster responses and to host annual contests for predicting patients' vaccination outcomes. We report here on our experiences with the "dry-run"prediction contest. We found that, among 20+ models adopted from the literature, the most successful model predicting vaccination outcome was based on age alone. This confirms our concerns about the reproducibility of conclusions between different vaccinology studies. Further, we found that, for newly trained models, handling of baseline information on the target variables was crucial. Overall, multiple co -inertia analysis gave the best results of the tested modeling approaches. Our goal is to engage community in these prediction challenges by making data and models available and opening a public contest in August 2024.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A systems vaccinology resource to develop and test computational models of immunity
    Shinde, Pramod
    Willemsen, Lisa
    Orfield, Shelby
    Kojima, Mari
    Reyna, Joaquin
    Ha, Brendan
    Greenbaum, Jason
    Overton, James
    Nili, Somayeh
    Rasmussen, Mikkel
    Gygi, Jeremy
    Antunes, Ricardo da Silva
    Sette, Alessandro
    Olsen, Lars Ronn
    Grant, Barry
    Konstorum, Anna
    Guan, Leying
    JOURNAL OF IMMUNOLOGY, 2024, 212 (01):
  • [2] A Commentary on Multi-omics Data Integration in Systems Vaccinology
    Shannon, Casey P.
    Lee, Amy H. Y.
    Tebbutt, Scott J.
    Singh, Amrit
    JOURNAL OF MOLECULAR BIOLOGY, 2024, 436 (08)
  • [3] Systems Biology and Multi-Omics
    Veenstra, Timothy D.
    PROTEOMICS, 2021, 21 (3-4)
  • [4] Emerging technologies for systems vaccinology - multi-omics integration and single-cell (epi)genomic profiling
    Wimmers, Florian
    Pulendran, Bali
    CURRENT OPINION IN IMMUNOLOGY, 2020, 65 : 57 - 64
  • [5] MyeloDB: a multi-omics resource for multiple myeloma
    Kumar, Ambuj
    Kumar, Keerthana Vinod
    Kundal, Kavita
    Sengupta, Avik
    Sharma, Simran
    Kunjulakshmi, R.
    Kumar, Rahul
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2024, 24 (01)
  • [6] MyeloDB: a multi-omics resource for multiple myeloma
    Ambuj Kumar
    Keerthana Vinod Kumar
    Kavita Kundal
    Avik Sengupta
    Simran Sharma
    Kunjulakshmi R
    Rahul Kumar
    Functional & Integrative Genomics, 2024, 24
  • [7] iDog: a multi-omics resource for canids study
    Liu, Yanhu
    Wang, Yibo
    Sun, Jiani
    Kong, Demian
    Zhou, Bowen
    Ding, Mengting
    Meng, Yuyan
    Duan, Guangya
    Cui, Ying
    Fan, Zhuojing
    Zhang, Ya-Ping
    Zhao, Wenming
    Tang, Bixia
    NUCLEIC ACIDS RESEARCH, 2024,
  • [8] Computational Oncology in the Multi-Omics Era: State of the Art
    de Anda-Jauregui, Guillermo
    Hernandez-Lemus, Enrique
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [9] MDDOmics: multi-omics resource of major depressive disorder
    Zhao, Yichao
    Xiang, Ju
    Shi, Xingyuan
    Jia, Pengzhen
    Zhang, Yan
    Li, Min
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2024, 2024
  • [10] A Multi-omics Data Resource for Frontotemporal Dementia Research
    Heutink, Peter
    Menden, Kevin
    Dalmia, Anupriya
    FRONTOTEMPORAL DEMENTIAS: EMERGING MILESTONES OF THE 21ST CENTURY, 2021, 1281 : 269 - 282