On some hypersurfaces of S2 x S2 and H2 x H2

被引:0
作者
Hu, Zejun [1 ]
Zhang, Xi [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Real hypersurface; Hopf hypersurface; Product angle function; Shape operator; Structure Jacobi operator; STRUCTURE JACOBI OPERATOR; REAL HYPERSURFACES; NONEXISTENCE; SURFACES;
D O I
10.1007/s13398-024-01612-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first classify Hopf hypersurfaces of both S-2 x S(2 )and H(2 )x( )H(2) which satisfy one of the three conditions: (1) constant mean curvature, (2) constant scalar curvature, (3) constant squared norm of the shape operator. It follows that these three conditions are equivalent for a Hopf hypersurface of both S-2 x S(2 )and H(2 )x( )H(2). Then, we classify hypersurfaces of both S-2 x S(2 )and H(2 )x( )H(2 )whose structure Jacobi operator is of Codazzi type. As its direct consequence, we obtain the classification of hypersurfaces in both S-2 x S(2 )and H(2 )x( )H(2) for which the structure Jacobi operator satisfies one of the six conditions: (1) vanishing, (2) parallel, (3) recurrent, (4) semi-parallel, (5) Lie parallel, (6) Killing type.
引用
收藏
页数:16
相关论文
共 26 条
  • [1] ALMOST COMPLEX CURVES AND HOPF HYPERSURFACES IN THE NEARLY KAHLER 6-SPHERE
    BERNDT, J
    BOLTON, J
    WOODWARD, LM
    [J]. GEOMETRIAE DEDICATA, 1995, 56 (03) : 237 - 247
  • [2] Castro I, 2007, COMMUN ANAL GEOM, V15, P217
  • [3] Curvature of Hopf Hypersurfaces in a Complex Space Form
    Cho, Jong Taek
    Kimura, Makoto
    [J]. RESULTS IN MATHEMATICS, 2012, 61 (1-2) : 127 - 135
  • [4] REAL HYPERSURFACES IN COMPLEX GRASSMANNIANS OF RANK TWO WITH SEMI-PARALLEL STRUCTURE JACOBI OPERATOR
    De, Avik
    Loo, Tee-How
    Woo, Changhwa
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2019, 60 (02): : 505 - 515
  • [5] Constant angle surfaces in product spaces
    Dillen, Franki
    Kowalczyk, Daniel
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (06) : 1414 - 1432
  • [6] On hypersurfaces of H2 x H2
    Gao, Dong
    Ma, Hui
    Yao, Zeke
    [J]. SCIENCE CHINA-MATHEMATICS, 2024, 67 (02) : 339 - 366
  • [7] Gao D, 2021, Arxiv, DOI arXiv:2106.13975
  • [8] ON REAL HYPERSURFACES OF S2 x S2
    Gao, Dong
    Hu, Zejun
    Ma, Hui
    Yao, Zeke
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) : 4447 - 4461
  • [9] Integral geometry and Hamiltonian volume minimizing property of a totally geodesic Lagrangian torus in S2 x S2
    Iriyeh, H
    Ono, H
    Sakai, T
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2003, 79 (10) : 167 - 170
  • [10] Ivey TA, 2009, RESULTS MATH, V56, P473, DOI 10.1007/s00025-009-0380-2