Strongest nonlocal sets with minimum cardinality in tripartite systems

被引:3
作者
Zhen, Xiao-Fan [1 ]
Li, Mao-Sheng [2 ]
Zuo, Hui-Juan [1 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1103/PhysRevA.109.052422
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Strong nonlocality, proposed by Halder et al. [Phys. Rev. Lett. 122 , 040403 (2019)], is a stronger manifestation than quantum nonlocality. Subsequently, Shi et al. presented the concept of the strongest nonlocality [Quantum 6 , 619 (2022)]. Recently, Li and Wang [Quantum 7 , 1101 (2023)] posed the conjecture about a lower bound to the cardinality of the strongest nonlocal set S in (R) ni = 1 C d i , i.e., | S| max i {11 nj = 1 d j / d i + 1 } . In this work, we construct the strongest nonlocal set of size d 2 + 1 in C d (R) C d (R) C d . Furthermore, we obtain the strongest nonlocal set of size d 2 d 3 + 1 in C d 1 (R) C d 2 (R) C d 3 . Our construction reaches the lower bound, which provides an affirmative solution to Li and Wang's conjecture. ln particular, the strongest nonlocal sets we present here contain the least number of orthogonal states among the available results.
引用
收藏
页数:9
相关论文
共 49 条
  • [1] Bell J S., 1964, Physics Physique Fizika, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
  • [2] Quantum nonlocality without entanglement
    Bennett, CH
    DiVincenzo, DP
    Fuchs, CA
    Mor, T
    Rains, E
    Shor, PW
    Smolin, JA
    Wootters, WK
    [J]. PHYSICAL REVIEW A, 1999, 59 (02): : 1070 - 1091
  • [3] Locally distinguishing nonlocal sets with entanglement resource
    Cao, Hai-Qing
    Zuo, Hui-Juan
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 623
  • [4] Locally stable sets with minimum cardinality
    Cao, Hai-Qing
    Li, Mao-Sheng
    Zuo, Hui-Juan
    [J]. PHYSICAL REVIEW A, 2023, 108 (01)
  • [5] Constructing the three-qudit unextendible product bases with strong nonlocality
    Che, Bichen
    Dou, Zhao
    Chen, Xiubo
    Yang, Yu
    Li, Jian
    Yang, Yixian
    [J]. CHINESE PHYSICS B, 2022, 31 (06)
  • [6] Distinguishing the elements of a full product basis set needs only projective measurements and classical communication
    Chen, PX
    Li, CZ
    [J]. PHYSICAL REVIEW A, 2004, 70 (02): : 022306 - 1
  • [7] Local distinguishability with preservation of entanglement
    Cohen, Scott M.
    [J]. PHYSICAL REVIEW A, 2007, 75 (05):
  • [8] Quantum data hiding
    DiVincenzo, DP
    Leung, DW
    Terhal, BM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (03) : 580 - 598
  • [9] Distinguishability of maximally entangled states
    Ghosh, S
    Kar, G
    Roy, A
    Sarkar, D
    [J]. PHYSICAL REVIEW A, 2004, 70 (02): : 022304 - 1
  • [10] Distinguishability of Bell states
    Ghosh, S
    Kar, G
    Roy, A
    Sende, A
    Sen, U
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (27) : 277902 - 277902