Integrated Transcriptomic and Metabolomic Analysis Revealed Abscisic Acid-Induced Regulation of Monoterpene Biosynthesis in Grape Berries

被引:1
|
作者
Li, Xiangyi [1 ]
Yan, Yixuan [1 ]
Wang, Lei [1 ]
Li, Guanhan [1 ]
Wu, Yusen [2 ]
Zhang, Ying [3 ]
Xu, Lurong [1 ]
Wang, Shiping [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Agr & Biol, Dept Plant Sci, Shanghai 200240, Peoples R China
[2] Shandong Acad Agr Sci, Shandong Acad Grape, Jinan 250100, Peoples R China
[3] Guangxi Acad Agr Sci, Grape & Wine Inst, Nanning 530007, Peoples R China
来源
PLANTS-BASEL | 2024年 / 13卷 / 13期
基金
中国国家自然科学基金;
关键词
abscisic acid (ABA); monoterpenes; transcriptome; HS-SPME/GC-MS; Ruiduhongyu; grape berries; MUSCAT FLAVOR; ABA; SYNTHASE; AROMA; EXPRESSION; GA(3); WINES; ACCUMULATION; PROFILES; PATHWAY;
D O I
10.3390/plants13131862
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Monoterpenes are a class of volatile organic compounds that play crucial roles in imparting floral and fruity aromas to Muscat-type grapes. However, our understanding of the regulatory mechanisms underpinning monoterpene biosynthesis in grapes, particularly following abscisic acid (ABA) treatment, remains elusive. This study aimed to explore the impact of exogenous ABA on monoterpene biosynthesis in Ruiduhongyu grape berries by employing Headspace Solid-Phase Micro-Extraction Gas Chromatography-Mass Spectrometry (HS-SPME/GC-MS) analysis and transcriptome sequencing. The results suggested significant differences in total soluble solids (TSS), pH, and total acid content. ABA treatment resulted in a remarkable increase in endogenous ABA levels, with concentrations declining from veraison to ripening stages. ABA treatment notably enhanced monoterpene concentrations, particularly at the E_L37 and E_L38 stages, elevating the overall floral aroma of grape berries. According to the variable gene expression patterns across four developmental stages in response to ABA treatment, the E_L37 stage had the largest number of differential expressed genes (DEGs), which was correlated with a considerable change in free monoterpenes. Furthermore, functional annotation indicated that the DEGs were significantly enriched in primary and secondary metabolic pathways, underlining the relationship between ABA, sugar accumulation, and monoterpene biosynthesis. ABA treatment upregulated key genes involved in the methylerythritol phosphate (MEP) pathway, enhancing carbon allocation and subsequently impacting terpene synthesis. This study also identified transcription factors, including MYB and AP2/ERF families, potentially modulating monoterpene and aroma-related genes. Weighted gene co-expression network analysis (WGCNA) linked ABA-induced gene expression to monoterpene accumulation, highlighting specific modules enriched with genes associated with monoterpene biosynthesis; one of these modules (darkgreen) contained genes highly correlated with most monoterpenes, emphasizing the role of ABA in enhancing grape quality during berry maturation. Together, these findings provide valuable insights into the multifaceted effects of exogenous ABA on monoterpene compounds and grape berry flavor development, offering potential applications in viticulture and enology.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Integrated metabolomic and transcriptomic analysis of flavonoid biosynthesis in Ricinus communis L.
    Li, Hua
    Xu, Congping
    Zhou, Shen
    Huang, Sishu
    Wu, Zichen
    Jiangfang, Yiding
    Liu, Xianqing
    Zhan, Chuansong
    Luo, Jie
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 222
  • [22] Jasmonic Acid-Induced β-Cyclocitral Confers Resistance to Bacterial Blight and Negatively Affects Abscisic Acid Biosynthesis in Rice
    Taniguchi, Shiduku
    Takeda, Aya
    Kiryu, Masaki
    Gomi, Kenji
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (02)
  • [23] VviWRKY24 promotes β-damascenone biosynthesis by targeting VviNCED1 to increase abscisic acid in grape berries
    Wei, Yi
    Wang, Yachen
    Meng, Xiao
    Yao, Xuechen
    Xia, Nongyu
    Zhang, Huimin
    Meng, Nan
    Duan, Changqing
    Pan, Qiuhong
    HORTICULTURE RESEARCH, 2025, 12 (05)
  • [24] Integrated Transcriptomic and Metabolomic analysis reveals a transcriptional regulation network for the biosynthesis of carotenoids and flavonoids in ‘Cara cara’ navel Orange
    Haipeng Zhang
    Jiajing Chen
    Zhaoxin Peng
    Meiyan Shi
    Xiao Liu
    Huan Wen
    Youwu Jiang
    Yunjiang Cheng
    Juan Xu
    Hongyan Zhang
    BMC Plant Biology, 21
  • [25] New Insights into the Role of Cytokinin in Regulating Anthocyanin Biosynthesis and Leaf Expansion: An Integrated Transcriptomic, Metabolomic, and Physiological Analysis of Hypericum monogynum
    Duan, Lanjuan
    Zeng, Zhiyu
    Tang, Yaodan
    Liao, Yuwu
    Lin, Kai
    Hu, Hao
    Xu, Zeng-Fu
    Ni, Jun
    FORESTS, 2025, 16 (03):
  • [26] Transcriptomic Analysis of Cadmium Stressed Tamarix hispida Revealed Novel Transcripts and the Importance of Abscisic Acid Network
    Wang, Pei-Long
    Lei, Xiao-Jin
    Wang, Yuan-Yuan
    Liu, Bai-chao
    Wang, Dan-ni
    Liu, Zhong-Yuan
    Gao, Cai-Qiu
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [27] Integrated Transcriptomic and Proteomic Analysis Identifies Novel Regulatory Genes Associated with Plant Growth Regulator-Induced Astringency in Grape Berries
    Feng, Jiao
    Zhang, Wen
    Wang, Wu
    Nieuwenhuizen, Niels J.
    Atkinson, Ross G.
    Gao, Lei
    Hu, Haipeng
    Zhao, Wanli
    Ma, Ruiyang
    Zheng, Huan
    Tao, Jianmin
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (08) : 4433 - 4447
  • [28] Integrated Metabolomic and Transcriptomic Analysis of Puerarin Biosynthesis in Pueraria montana var. thomsonii at Different Growth Stages
    Hu, Xinyi
    Zhu, Ting
    Min, Xinyi
    He, Jianing
    Hou, Cong
    Liu, Xia
    GENES, 2023, 14 (12)
  • [29] Integrated transcriptomic and metabolomic analyses reveal transcriptional regulatory network for phenolic acid biosynthesis in potato tubers
    Wang, Weilu
    Liu, Zhen
    Qi, Zheying
    Li, Zhitao
    Zhu, Jinyong
    Chen, Limin
    Li, Yuanming
    Bi, Zhenzhen
    Yao, Panfeng
    Sun, Chao
    Liu, Yuhui
    FOOD BIOSCIENCE, 2024, 62
  • [30] Decoding anthocyanin biosynthesis regulation in Asparagus officinalis peel coloration: Insights from integrated metabolomic and transcriptomic analyses
    Ying, Jiali
    Wen, Shuangshuang
    Cai, Yunfei
    Ye, Youju
    Li, Lebin
    Qian, Renjuan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 215