Enhancing Complex Linguistic Tasks Resolution Through Fine-Tuning LLMs, RAG and Knowledge Graphs (Short Paper)

被引:3
作者
Bianchini, Filippo [1 ]
Calamo, Marco [1 ]
De Luzi, Francesca [1 ]
Macri, Mattia [1 ]
Mecella, Massimo [1 ]
机构
[1] Sapienza Univ Roma, Dipartimento Ingn Informat Automat & Gest Antonio, Rome, Italy
来源
ADVANCED INFORMATION SYSTEMS ENGINEERING WORKSHOPS, CAISE 2024 | 2024年 / 521卷
关键词
Large Language Models; Knowledge Graphs; Complex linguistic tasks;
D O I
10.1007/978-3-031-61003-5_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given the synergy between Large Language Models (LLMs) and Knowledge Graphs (KGs), we introduce a pipeline to tackle complex linguistic tasks, which we are experimenting in the legal domain. While LLMs offer unprecedented generative capabilities, their reliance on sub-symbolic processing can lead to fallacious outcomes. Our methodology introduces an advanced Retrieval Augmented Generation (RAG) pipeline, enriched with two KGs and optimized LLMs, promising to enhance the resolution of complex linguistic tasks. Through KG construction based on prompt engineering techniques and iterative fine-tuning, we transcend the limitations of conventional LLMs.
引用
收藏
页码:147 / 155
页数:9
相关论文
共 33 条
[1]  
Baldazzi T., 2024, Technical report
[2]  
Bianchini D., 2024, Digit. Govern.: Res. Pract., V5, P1
[3]  
Calamo M., 2023, Front. Artif. Intell. Appl.
[4]  
Carta S, 2023, Arxiv, DOI arXiv:2307.01128
[5]  
Catalano N, 2023, Arxiv, DOI [arXiv:2304.05832, 10.48550/arXiv.2304.05832]
[6]   Cicero: An AI-Based Writing Assistant for Legal Users [J].
De Luzi, Francesca ;
Macri, Mattia ;
Mecella, Massimo ;
Mencattini, Tommaso .
INTELLIGENT INFORMATION SYSTEMS, CAISE FORUM 2023, 2023, 477 :103-111
[7]   Knowledge graph-enhanced molecular contrastive learning with functional prompt [J].
Fang, Yin ;
Zhang, Qiang ;
Zhang, Ningyu ;
Chen, Zhuo ;
Zhuang, Xiang ;
Shao, Xin ;
Fan, Xiaohui ;
Chen, Huajun .
NATURE MACHINE INTELLIGENCE, 2023, 5 (05) :542-+
[8]  
Gao Yunfan, 2024, Retrieval-augmented generation for large language models: A survey
[9]  
Guu K, 2020, PR MACH LEARN RES, V119
[10]   Knowledge Graphs [J].
Hogan, Aidan ;
Blomqvist, Eva ;
Cochez, Michael ;
D'Amato, Claudia ;
de Melo, Gerard ;
Gutierrez, Claudio ;
Kirrane, Sabrina ;
Labra Gayo, Jose Emilio ;
Navigli, Roberto ;
Neumaier, Sebastian ;
Ngomo, Axel-Cyrille Ngonga ;
Polleres, Axel ;
Rashid, Sabbir M. ;
Rula, Anisa ;
Schmelzeisen, Lukas ;
Sequeda, Juan ;
Staab, Steffen ;
Zimmermann, Antoine .
ACM COMPUTING SURVEYS, 2021, 54 (04)