Dual-Branch Adaptive Convolutional Transformer for Hyperspectral Image Classification

被引:1
|
作者
Wang, Chuanzhi [1 ]
Huang, Jun [1 ]
Lv, Mingyun [1 ]
Wu, Yongmei [1 ]
Qin, Ruiru [1 ]
机构
[1] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
关键词
hyperspectral image classification; adaptive multi-head self-attention; convolutional neural networks; transformers; RESIDUAL NETWORK; ATTENTION;
D O I
10.3390/rs16091615
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In hyperspectral image (HSI) classification, convolutional neural networks (CNNs) and transformer architectures have each contributed to considerable advancements. CNNs possess potent local feature representation skills, whereas transformers excel in learning global features, offering a complementary strength. Nevertheless, both architectures are limited by static receptive fields, which hinder their accuracy in delineating subtle boundary discrepancies. To mitigate the identified limitations, we introduce a novel dual-branch adaptive convolutional transformer (DBACT) network architecture featuring an adaptive multi-head self-attention mechanism. The architecture begins with a triadic parallel stem structure for shallow feature extraction and reduction of the spectral dimension. A global branch with adaptive receptive fields performs high-level global feature extraction. Simultaneously, a local branch with a cross-attention module provides detailed local insights, enriching the global perspective. This methodical integration synergizes the advantages of both branches, capturing representative spatial-spectral features from HSI. Comprehensive evaluation across three benchmark datasets reveals that the DBACT model exhibits superior classification performance compared to leading-edge models.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Dual-branch vision transformer for blind image quality assessment*
    Lee, Se-Ho
    Kim, Seung-Wook
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 94
  • [32] Deep Image Classification Model Based on Dual-Branch
    Chen, Haoyu
    Lv, Qi
    Zhou, Wei
    Zheng, Jiang
    Wang, Jian
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 636 - 643
  • [33] A dual-branch multi-feature deep fusion network framework for hyperspectral image classification
    Liu, Linfeng
    Zhang, Chengcai
    Luo, Weiran
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 18692 - 18715
  • [34] Dual-Branch-UNet: A Dual-Branch Convolutional Neural Network for Medical Image Segmentation
    Jian, Muwei
    Wu, Ronghua
    Chen, Hongyu
    Fu, Lanqi
    Yang, Chengdong
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (01): : 705 - 716
  • [35] Dual-Branch Fourier-Mixing Transformer Network for Hyperspectral Target Detection
    Jiao, Jinyue
    Gong, Zhiqiang
    Zhong, Ping
    REMOTE SENSING, 2023, 15 (19)
  • [36] FUSION OF HYPERSPECTRAL AND LIDAR DATA BASED ON DUAL-BRANCH CONVOLUTIONAL NEURAL NETWORK
    Wang, Jinzhe
    Zhang, Junping
    Guo, Qingle
    Li, Tong
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3388 - 3391
  • [37] Dual-Branch Dynamic Modulation Network for Hyperspectral and LiDAR Data Classification
    Xu, Zhengyi
    Jiang, Wen
    Geng, Jie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [38] Dual-branch collaborative transformer for effective
    Qi, Xuanyu
    Song, Tianyu
    Dong, Haobo
    Jin, Jiyu
    Jin, Guiyue
    Li, Pengpeng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 100
  • [39] A Lightweight Dual-Branch Swin Transformer for Remote Sensing Scene Classification
    Zheng, Fujian
    Lin, Shuai
    Zhou, Wei
    Huang, Hong
    REMOTE SENSING, 2023, 15 (11)
  • [40] Dual-branch dilated context convolutional for table detection transformer in the document images
    Ni, Ying
    Wang, Xiaoli
    Peng, Hanghang
    Li, Yonzhi
    Wang, Jinyang
    Li, Haoxuan
    Huang, Jin
    VISUAL COMPUTER, 2025, 41 (04): : 2709 - 2720