Mobile edge computing based cognitive network security analysis using multi agent machine learning techniques in B5G

被引:0
|
作者
Duan, Ying [1 ,2 ]
Wu, Qingtao [2 ]
Zhao, Xuezhuan [2 ,3 ]
Li, Xiaoyu [2 ]
机构
[1] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ Aeronaut, Sch Intelligent Engn, Zhengzhou 450046, Henan, Peoples R China
[3] Chongqing Res Inst HIT, Chongqing 401151, Peoples R China
基金
中国国家自然科学基金;
关键词
Cognitive network; Security analysis; Mobile edge computing; Machine learning model; B5G;
D O I
10.1016/j.compeleceng.2024.109181
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The proliferation of wireless applications at an exponential rate has made spectrum problems worse. Saturation in the unlicensed frequency spectrum is rapidly increasing as a result of the increasing data rates required by new wireless devices. A proposed solution to this problem is cognitive radio, which allows for the opportunistic use of licenced spectrum in less crowded areas. Cognitive network-based security evaluations using mobile edge computing and a Beyond 5G' (B5G) machine learning (ML) model are the focus of this research. In this case, the security study was carried out using cognitive network data transfer and multi-agent reinforcement encoder neural network and mobile edge computing (MRENN-MEC), a multi-agent reinforcement encoder neural network with mobile edge computing. Scalability, quality of service, throughput, and forecast accuracy are some of the network properties that undergo experimental analysis.
引用
收藏
页数:11
相关论文
共 24 条
  • [1] Multi agent system based smart grid anomaly detection using blockchain machine learning model in mobile edge computing network
    Wang, Jing
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 121
  • [2] A Multi-Agent Deep Reinforcement Learning Approach for Computation Offloading in 5G Mobile Edge Computing
    Gan, Zhaoyu
    Lin, Rongheng
    Zou, Hua
    2022 22ND IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2022), 2022, : 645 - 654
  • [3] Machine Learning based Intelligent Cognitive Network using Fog Computing
    Lu, Jingyang
    Li, Lun
    Chen, Genshe
    Shen, Dan
    Pham, Khanh
    Blasch, Erik
    SENSORS AND SYSTEMS FOR SPACE APPLICATIONS X, 2017, 10196
  • [4] Multi-Agent Reinforcement Learning Based File Caching Strategy in Mobile Edge Computing
    Yang, Yongjian
    Lou, Kaihao
    Wang, En
    Liu, Wenbin
    Shang, Jianwen
    Song, Xueting
    Li, Dawei
    Wu, Jie
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2023, 31 (06) : 3159 - 3174
  • [5] Machine Learning Assisted Video Stream Offloading for 5G MBMS Mobile Edge Computing
    Mu, Junsheng
    Jin, Jian
    Jing, Xiaojun
    Zhang, Ronghui
    Zhang, Peiying
    Zhu, Hailong
    IEEE TRANSACTIONS ON BROADCASTING, 2023, 69 (04) : 872 - 881
  • [6] Cooperative Task Offloading for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning
    Yang, Jian
    Yuan, Qifeng
    Chen, Shuangwu
    He, Huasen
    Jiang, Xiaofeng
    Tan, Xiaobin
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (03): : 3205 - 3219
  • [7] Optical wireless communication based mobile edge computing integrated channel allocation using scheduling with machine learning protocols in advanced 5G networks
    Vishnoi, Rahul
    Pradeepa, P.
    Kumar, Deepak
    Das, Ganana Jeba
    Lodha, Lokesh
    Awasthi, Aishwary
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (01)
  • [8] A Task Offloading and Resource Allocation Strategy Based on Multi-Agent Reinforcement Learning in Mobile Edge Computing
    Jiang, Guiwen
    Huang, Rongxi
    Bao, Zhiming
    Wang, Gaocai
    FUTURE INTERNET, 2024, 16 (09)
  • [9] Optimization of Task Offloading Strategy for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Zheng, Shuai
    Shen, Yifan
    IEEE ACCESS, 2020, 8 : 202573 - 202584
  • [10] Multi-Agent Deep Reinforcement Learning-Based Interdependent Computing for Mobile Edge Computing-Assisted Robot Teams
    Cui, Qimei
    Zhao, Xiyu
    Ni, Wei
    Hu, Zheng
    Tao, Xiaofeng
    Zhang, Ping
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) : 6599 - 6610