Quantum-centric supercomputing for materials science: A perspective on challenges and future directions

被引:11
作者
Alexeev, Yuri [1 ]
Amsler, Maximilian [2 ]
Barroca, Marco Antonio [3 ,4 ]
Bassini, Sanzio [5 ]
Battelle, Torey [6 ]
Camps, Daan [7 ]
Casanova, David [8 ,9 ]
Choi, Young Jay [10 ]
Chong, Frederic T. [11 ]
Chung, Charles [12 ]
Codella, Christopher [12 ]
Corcoles, Antonio D. [12 ]
Cruise, James [13 ]
Di Meglio, Alberto [14 ]
Duran, Ivan [12 ]
Eckl, Thomas [2 ]
Economou, Sophia [15 ]
Eidenbenz, Stephan [16 ]
Elmegreen, Bruce [12 ]
Fare, Clyde [12 ]
Faro, Ismael [12 ]
Fernandez, Cristina Sanz [12 ]
Ferreira, Rodrigo Neumann Barros [3 ]
Fuji, Keisuke [17 ]
Fuller, Bryce [12 ]
Gagliardi, Laura [1 ,18 ]
Galli, Giulia [1 ,11 ]
Glick, Jennifer R. [1 ,11 ]
Gobbi, Isacco [19 ]
Gokhale, Pranav [20 ]
Gonzalez, Salvador de la Puente [12 ]
Greiner, Johannes [12 ]
Gropp, Bill [21 ]
Grossi, Michele [14 ]
Gull, Emanuel [22 ]
Healy, Burns [23 ]
Hermes, Matthew R. [18 ]
Huang, Benchen [11 ]
Humble, Travis S. [24 ]
Ito, Nobuyasu [25 ]
Izmaylov, Artur F. [26 ,27 ]
Javadi-Abhari, Ali [12 ]
Jennewein, Douglas [6 ]
Jha, Shantenu [28 ,29 ]
Jiang, Liang [11 ]
Jones, Barbara [30 ]
de Jong, Wibe Albert [31 ]
Jurcevic, Petar [12 ]
Kirby, William [32 ]
Kister, Stefan [12 ]
机构
[1] Argonne Natl Lab, Lemont, IL 60439 USA
[2] Robert Bosch GmbH, Corp Sect Res & Adv Engn, Robert Bosch Campus 1, D-71272 Renningen, Germany
[3] IBM Res, BR-20031170 Rio De Janeiro, RJ, Brazil
[4] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil
[5] CINECA, Via Magnanelli 6-3, I-40033 Casalecchio Di Reno, BO, Italy
[6] Arizona State Univ, Tempe, AZ USA
[7] Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr, Berkeley, CA USA
[8] Donostia Int Phys Ctr DIPC, Donostia San Sebastian 20018, Euskadi, Spain
[9] Basque Fdn Sci, Ikerbasque, Bilbao 48009, Spain
[10] Yonsei Univ, Dept Phys, Seoul 03722, South Korea
[11] Univ Chicago, Chicago, IL USA
[12] IBM Quantum, IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[13] Cambridge Consultants, Cambridge, England
[14] European Org Nucl Res CERN, CH-1211 Geneva, Switzerland
[15] Virginia Tech, Blacksburg, VA 24061 USA
[16] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[17] Osaka Univ, Osaka 5608531, Japan
[18] Univ Chicago, Chicago Ctr Theoret Chem, Dept Chem, Chicago, IL USA
[19] Fraunhofer ITWM, D-67663 Kaiserslautern, Rheinland Pfalz, Germany
[20] Infleqtion, Chicago, IL 60622 USA
[21] Univ Illinois, Urbana, IL USA
[22] Univ Michigan, Ann Arbor, MI 48109 USA
[23] Dell Technol, Res Off, Res Triangle Pk, NC USA
[24] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
[25] RIKEN Ctr Computat Sci R CCS, Kobe, Hyogo 6500047, Japan
[26] Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M5S 3H6, Canada
[27] Univ Toronto Scarborough, Dept Phys & Environm Sci, Toronto, ON M1C 1A4, Canada
[28] Brookhaven Natl Lab, Upton, NY USA
[29] Rutgers State Univ, New Brunswick, NJ USA
[30] IBM Quantum, IBM Res Almaden, San Jose, CA 95120 USA
[31] Lawrence Berkeley Natl Lab, Appl Math & Computat Res Div, Berkeley, CA 94720 USA
[32] IBM Quantum, IBM Res Cambridge, Cambridge, MA 02142 USA
[33] Phasecraft Ltd, London, England
[34] Elect & Telecommun Res Inst ETRI, Daejeon, South Korea
[35] Keio Univ, Yokohama, Kanagawa 2238522, Japan
[36] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[37] Fermilab Natl Accelerator Lab, Superconducting Quantum Mat & Syst Ctr SQMS, Batavia, IL 60510 USA
[38] PAS Poznan, Poznan Supercomp & Networking Ctr, IBCH, Poznan, Poland
[39] IBM Res Europe, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[40] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[41] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[42] Univ Washington, Seattle, WA 98195 USA
[43] EHU, Ctr Fis Mat, CSIC, Donostia San Sebastian 20018, Euskadi, Spain
[44] BMW Grp, Munich, Germany
[45] Princeton Univ, Princeton, NJ USA
[46] Forschungszentrum Julich, Inst Adv Simulat, Julich Supercomp Ctr, D-52425 Julich, Germany
[47] Univ Calif Berkeley, Berkeley, CA 94720 USA
[48] JSR Corp, 3-103-9 Kawasaki Ku, Kawasaki, Kanagawa 2100821, Japan
[49] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[50] Univ Wisconsin Madison, Dept Phys, Madison, WI 53706 USA
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2024年 / 160卷
关键词
Quantum-centric supercomputing; Quantum computing; Materials science; High-performance computing; CONFIGURATION-INTERACTION; SIMULATION; STATES;
D O I
10.1016/j.future.2024.04.060
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Computational models are an essential tool for the design, characterization, and discovery of novel materials. Computationally hard tasks in materials science stretch the limits of existing high-performance supercomputing centers, consuming much of their resources for simulation, analysis, and data processing. Quantum computing, on the other hand, is an emerging technology with the potential to accelerate many of the computational tasks needed for materials science. In order to do that, the quantum technology must interact with conventional highperformance computing in several ways: approximate results validation, identification of hard problems, and synergies in quantum-centric supercomputing. In this paper, we provide a perspective on how quantum-centric supercomputing can help address critical computational problems in materials science, the challenges to face in order to solve representative use cases, and new suggested directions.
引用
收藏
页码:666 / 710
页数:45
相关论文
共 52 条
  • [41] A massively parallel tensor contraction framework for coupled-cluster computations
    Solomonik, Edgar
    Matthews, Devin
    Hammond, Jeff R.
    Stanton, John F.
    Demmel, James
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2014, 74 (12) : 3176 - 3190
  • [42] Szabo A., 1989, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
  • [43] Locality and Digital Quantum Simulation of Power-Law Interactions
    Tran, Minh C.
    Guo, Andrew Y.
    Su, Yuan
    Garrison, James R.
    Eldredge, Zachary
    Foss-Feig, Michael
    Childs, Andrew M.
    Gorshkov, Alexey V.
    [J]. PHYSICAL REVIEW X, 2019, 9 (03):
  • [44] Modern Approaches to Exact Diagonalization and Selected Configuration Interaction with the Adaptive Sampling CI Method
    Tubman, Norm M.
    Freeman, C. Daniel
    Levine, Daniel S.
    Hait, Diptarka
    Head-Gordon, Martin
    Whaley, K. Birgitta
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (04) : 2139 - 2159
  • [45] A deterministic alternative to the full configuration interaction quantum Monte Carlo method
    Tubman, Norm M.
    Lee, Joonho
    Takeshita, Tyler Y.
    Head-Gordon, Martin
    Whaley, K. Birgitta
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (04)
  • [46] Prospects for release-node quantum Monte Carlo
    Tubman, Norm M.
    DuBois, Jonathan L.
    Hood, Randolph Q.
    Alder, Berni J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (18)
  • [47] NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
    Valiev, M.
    Bylaska, E. J.
    Govind, N.
    Kowalski, K.
    Straatsma, T. P.
    Van Dam, H. J. J.
    Wang, D.
    Nieplocha, J.
    Apra, E.
    Windus, T. L.
    de Jong, Wa.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (09) : 1477 - 1489
  • [48] Swift GW beyond 10,000 electrons using sparse stochastic compression
    Vlcek, Vojtech
    Li, Wenfei
    Baer, Roi
    Rabani, Eran
    Neuhauser, Daniel
    [J]. PHYSICAL REVIEW B, 2018, 98 (07)
  • [49] Resource-Optimized Fermionic Local-Hamiltonian Simulation on a Quantum Computer for Quantum Chemistry
    Wang, Qingfeng
    Li, Ming
    Monroe, Christopher
    Nam, Yunseong
    [J]. QUANTUM, 2021, 5 : 1 - 36
  • [50] Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register
    Wang, Ya
    Dolde, Florian
    Biamonte, Jacob
    Babbush, Ryan
    Bergholm, Ville
    Yang, Sen
    Jakobi, Ingmar
    Neumann, Philipp
    Aspuru-Guzik, Alan
    Whitfield, James D.
    Wrachtrup, Joerg
    [J]. ACS NANO, 2015, 9 (08) : 7769 - 7774