On Chen's theorem over Piatetski-Shapiro type primes and almost-primes

被引:0
|
作者
Li, Jinjiang [1 ]
Xue, Fei [1 ]
Zhang, Min [2 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Almost-prime; Bombieri-Vinogradov theorem; Chen's theorem; Exponential sum; Piatetski-Shapiro sequence; ADDITIVE PROBLEM; NUMBERS; VINOGRADOV;
D O I
10.1007/s11139-024-00941-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a new mean value theorem of Bombieri-Vinogradov type over Piatetski-Shapiro sequence. Namely, it is proved that for any given constant A>0 and any sufficiently small epsilon > 0, there holds Sigma(d <= x xi(d,l)=1)| Sigma(A1(x)<= a<A2(x)(a,d)=1) g(a)( Sigma(ap <= xap equivalent to l(modd)ap=[k1/gamma])1-1 phi(d)| Sigma(ap <= xap = [k1/gamma])1)| << x(gamma)(log x)(A), provided that 1 <= A(1)(x) < A(2)(x) <= x(1-epsilon) and g(a)<< tau(s)(r)(a), where l not equal 0 is a fixed integer and xi := xi(gamma) = 2(38)+17/ 38 gamma-2(38)-1/38-epsilon with 1-18/2(38) + 17 < gamma < 1. Moreover, for gamma satisfying 1-0.03208/2(38)+17 < gamma < 1, w e prove that there exist infinitely many primes p such that p+2 = P-2 with P-2 being Piatetski-Shapiro almost-primes of type gamma, and there exist infinitely many Piatetski-Shapiro primes p of type gamma such that p+2 = P-2. These results generalize the result of Pan and Ding [37] and constitutes an improvement upon a series of previous results of [29,31,39,47].
引用
收藏
页码:1323 / 1362
页数:40
相关论文
共 36 条
  • [1] An additive problem over Piatetski-Shapiro primes and almost-primes
    Li, Jinjiang
    Zhang, Min
    Xue, Fei
    RAMANUJAN JOURNAL, 2022, 57 (04) : 1307 - 1333
  • [2] On a Piatetski-Shapiro analog problem over almost-primes
    Zhai, W. -g.
    Zhao, Y. -t.
    ACTA MATHEMATICA HUNGARICA, 2023, 170 (02) : 616 - 632
  • [3] On a Piatetski-Shapiro analog problem over almost-primes
    W.-G. Zhai
    Y.-T. Zhao
    Acta Mathematica Hungarica, 2023, 170 : 616 - 632
  • [4] An additive problem with Piatetski-Shapiro primes and almost-primes
    Peneva, TP
    MONATSHEFTE FUR MATHEMATIK, 2003, 140 (02): : 119 - 133
  • [5] An additive problem over Piatetski–Shapiro primes and almost-primes
    Jinjiang Li
    Min Zhang
    Fei Xue
    The Ramanujan Journal, 2022, 57 : 1307 - 1333
  • [6] An additive problem over intersection of two Piatetski-Shapiro prime sets and almost-primes
    Li, Xiaotian
    Zhai, Wenguang
    PERIODICA MATHEMATICA HUNGARICA, 2024, 89 (02) : 265 - 297
  • [7] Piatetski-Shapiro primes from almost primes
    Baker, Roger C.
    Banks, William D.
    Guo, Zhenyu V.
    Yeager, Aaron M.
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (03): : 357 - 370
  • [8] Almost primes in Piatetski-Shapiro sequences
    Guo, Victor Zhenyu
    AIMS MATHEMATICS, 2021, 6 (09): : 9536 - 9546
  • [9] Roth's theorem in the Piatetski-Shapiro primes
    Mirek, Mariusz
    REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (02) : 617 - 656
  • [10] Hua's theorem with the primes in Piatetski-Shapiro prime sets
    Li, Jinjiang
    Zhang, Min
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (01) : 193 - 220