Boundary value problems for integro-differential and singular higher-order differential equations

被引:1
作者
Anceschi, Francesca [1 ]
Calamai, Alessandro [2 ]
Marcelli, Cristina [1 ]
Papalini, Francesca [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche 12, I-60131 Ancona, Italy
[2] Univ Politecn Marche, Dipartimento Ingn Civile Edile & Architettura, Via Brecce Bianche, I-60131 Ancona, Italy
关键词
boundary value problems; nonlinear differential operators; Phi-Laplacian operator; singular equation; Nagumo condition; STRONGLY NONLINEAR EQUATIONS;
D O I
10.1515/math-2024-0008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate third-order strongly nonlinear differential equations of the type ( Phi ( k ( t ) u '' ( t ) ) ) ' = f ( t , u ( t ) , u ' ( t ) , u '' ( t ) ) , a.e. on [ 0 , T ] , \left(\Phi \left(k\left(t){u}<^>{<^>{\prime\prime} }\left(t)))<^>{\prime} =f\left(t,u\left(t),u<^>{\prime} \left(t),{u}<^>{<^>{\prime\prime} }\left(t)),\hspace{1em}\hspace{0.1em}\text{a.e. on}\hspace{0.1em}\hspace{0.33em}\left[0,T], where Phi \Phi is a strictly increasing homeomorphism, and the non-negative function k k may vanish on a set of measure zero. Using the upper and lower solution method, we prove existence results for some boundary value problems associated with the aforementioned equation. Moreover, we also consider second-order integro-differential equations like ( Phi ( k ( t ) v ' ( t ) ) ) ' = f t , integral 0 t v ( s ) d s , v ( t ) , v ' ( t ) , a.e. on [ 0 , T ] , \left(\Phi \left(k\left(t)v<^>{\prime} \left(t)))<^>{\prime} =f\left(t,\underset{0}{\overset{t}{\int }}v\left(s){\rm{d}}s,v\left(t),v<^>{\prime} \left(t)\right),\hspace{1em}\hspace{0.1em}\text{a.e. on}\hspace{0.1em}\hspace{0.33em}\left[0,T], for which we provide existence results for various types of boundary conditions, including periodic, Sturm-Liouville, and Neumann-type conditions.
引用
收藏
页数:21
相关论文
共 23 条
[1]   Solution of the Falkner-Skan equation by recursive evaluation of Taylor coefficients [J].
Asaithambi, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (01) :203-214
[2]   Existence of positive solutions for a singular third-order two-point boundary value problem on the half-line [J].
Bao, Yongdong ;
Wang, Libo ;
Pei, Minghe .
BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
[3]   Boundary value problems associated with singular strongly nonlinear equations with functional terms [J].
Biagi, Stefano ;
Calamai, Alessandro ;
Marcelli, Cristina ;
Papalini, Francesca .
ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) :684-706
[4]   ON THE SOLVABILITY OF SINGULAR BOUNDARY VALUE PROBLEMS ON THE REAL LINE IN THE CRITICAL GROWTH CASE [J].
Biagi, Stefano ;
Isernia, Teresa .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (02) :1131-1157
[5]   On the existence of weak solutions for singular strongly nonlinear boundary value problems on the half-line [J].
Biagi, Stefano .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (02) :589-618
[6]   Heteroclinic solutions for a class of boundary value problems associated with singular equations [J].
Biagi, Stefano ;
Calamai, Alessandro ;
Papalini, Francesca .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 184 :44-68
[7]  
Brighi B., 2008, Adv. Differential Equations, V13, P509, DOI DOI 10.57262/ADE/1355867344
[8]   Existence result for the problem (φ(u′))′=f(t,u,u′) with periodic and Neumann boundary conditions. [J].
Cabada, A ;
Pouso, RL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (03) :1733-1742
[9]   Third-order differential equations with three-point boundary conditions [J].
Cabada, Alberto ;
Dimitrov, Nikolay D. .
OPEN MATHEMATICS, 2021, 19 (01) :11-31
[10]   An Overview of the Lower and Upper Solutions Method with Nonlinear Boundary Value Conditions [J].
Cabada, Alberto .
BOUNDARY VALUE PROBLEMS, 2011,