Development and Validation of a Machine Learning Algorithm to Predict the Risk of Blood Transfusion after Total Hip Replacement in Patients with Femoral Neck Fractures: A Multicenter Retrospective Cohort Study

被引:0
作者
Zhu, Jieyang [1 ]
Xu, Chenxi [2 ]
Jiang, Yi [1 ]
Zhu, Jinyu [1 ]
Tu, Mengyun [3 ]
Yan, Xiaobing [4 ]
Shen, Zeren [5 ]
Lou, Zhenqi [1 ]
机构
[1] Jiaxing Univ, Affiliated Hosp, Dept Orthoped, Jiaxing 314501, Zhejiang, Peoples R China
[2] Tongxiang Wutong St Community Hlth Serv Ctr, Gen Practice Dept, Jiaxing, Peoples R China
[3] Zhejiang Chinese Med Univ, Hangzhou TCM Hosp, Dept Clin Lab, Hangzhou, Peoples R China
[4] Dalian Med Univ, Affiliated Hosp 2, Dept Spine Surg, Dalian, Peoples R China
[5] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON, Canada
关键词
Allogeneic transfusion; Femoral neck fracture; Machine learning; Prediction model; Total hip arthroplasty; BODY-MASS INDEX; TOTAL KNEE; ARTHROPLASTY; MORTALITY; IMPACT; COMPLICATIONS; REQUIREMENT; SURGERY;
D O I
10.1111/os.14160
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Objective: Total hip arthroplasty (THA) remains the primary treatment option for femoral neck fractures in elderly patients. This study aims to explore the risk factors associated with allogeneic blood transfusion after surgery and to develop a dynamic prediction model to predict post-operative blood transfusion requirements. This will provide more accurate guidance for perioperative humoral management and rational allocation of medical resources. Methods: We retrospectively analyzed data from 829 patients who underwent total hip arthroplasty for femoral neck fractures at three third-class hospitals between January 2017 and August 2023. Patient data from one hospital were used for model development, whereas data from the other two hospitals were used for external validation. Logistic regression analysis was used to screen the characteristic subsets related to blood transfusion. Various machine learning algorithms, including logistic regression, SVA (support vector machine), K-NN (k-nearest neighbors), MLP (multilayer perceptron), naive Bayes, decision tree, random forest, and gradient boosting, were used to process the data and construct prediction models. A 10-fold cross-validation algorithm facilitated the comparison of the predictive performance of the models, resulting in the selection of the best-performing model for the development of an open-source computing program. Results: BMI (body mass index), surgical duration, IBL (intraoperative blood loss), anticoagulant history, utilization rate of tranexamic acid, Pre-Hb, and Pre-ALB were included in the model as well as independent risk factors. The average area under curve (AUC) values for each model were as follows: logistic regression (0.98); SVA (0.91); k-NN (0.87) MLP, (0.96); naive Bayes (0.97); decision tree (0.87); random forest (0.96); and gradient boosting (0.97). A web calculator based on the best model is available at: (https://nomo99.shinyapps.io/dynnomapp/)). Conclusion: Utilizing a computer algorithm, a prediction model with a high discrimination accuracy (AUC > 0.5) was developed. The logistic regression model demonstrated superior differentiation and reliability, thereby successfully passing external validation. The model's strong generalizability and applicability have significant implications for clinicians, aiding in the identification of patients at high risk for postoperative blood transfusion.
引用
收藏
页码:2066 / 2080
页数:15
相关论文
共 61 条
[1]  
[Anonymous], 2022, INVESTIGATORS W MICH
[2]  
[Anonymous], 2016, CHIN J ORTHOP, V36, DOI [10.3969/j.issn.1674-134X.2009.03.022, DOI 10.3969/J.ISSN.1674-134X.2009.03.022]
[3]   Free fatty acids are responsible for the hidden blood loss in total hip and knee arthroplasty [J].
Bao, Nirong ;
Zhou, Liwu ;
Cong, Yu ;
Guo, Ting ;
Fan, Wenbin ;
Chang, Zhiyong ;
Zhao, Jianning .
MEDICAL HYPOTHESES, 2013, 81 (01) :104-107
[4]   Impact of body mass index on hemoglobin level and blood transfusion in total knee arthroplasty: A retrospective case control study [J].
Bashaireh, Khaldoon ;
Aljararhih, Osama ;
Alawneh, Khaldoon .
ANNALS OF MEDICINE AND SURGERY, 2020, 55 :180-184
[5]   Preoperative risk factors for postoperative blood transfusion after hip fracture surgery: establishment of a nomogram [J].
Bian, Fu Cheng ;
Cheng, Xiao Kang ;
An, Yong Sheng .
JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2021, 16 (01)
[6]   Preoperative versus postoperative initiation of dalteparin thromboprophylaxis in THA [J].
Borgen, Pal O. ;
Dahl, Ola E. ;
Reikeras, Olav .
HIP INTERNATIONAL, 2010, 20 (03) :301-307
[7]   Validation of Machine Learning Model Performance in Predicting Blood Transfusion After Primary and Revision Total Hip Arthroplasty [J].
Buddhiraju, Anirudh ;
Shimizu, Michelle Riyo ;
Subih, Murad A. ;
Chen, Tony Lin-Wei ;
Seo, Henry Hojoon ;
Kwon, Young-Min .
JOURNAL OF ARTHROPLASTY, 2023, 38 (10) :1959-1966
[8]   Influencing factors of hidden blood loss after primary total hip arthroplasty through the posterior approach: a retrospective study [J].
Cai, Lijun ;
Chen, Liyile ;
Zhao, Chengcheng ;
Wang, Qiuru ;
Kang, Pengde .
BMC MUSCULOSKELETAL DISORDERS, 2023, 24 (01)
[9]   Predicting blood loss and transfusion requirements during radical prostatectomy: The significant negative impact of increasing body mass index [J].
Chang, SS ;
Duong, DT ;
Wells, N ;
Cole, EE ;
Smith, JA ;
Cookson, MS .
JOURNAL OF UROLOGY, 2004, 171 (05) :1861-1865
[10]   Predictors and Outcomes of Postoperative Hemoglobin of <8 g/dL in Total Joint Arthroplasty [J].
Chaudhry, Yash P. ;
MacMahon, Aoife ;
Rao, Sandesh S. ;
Mekkawy, Kevin L. ;
Toci, Gregory R. ;
Oni, Julius K. ;
Sterling, Robert S. ;
Khanuja, Harpal S. .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2022, 104 (02) :166-171