Existence of Solutions to Elliptic Equations on Compact Riemannian Manifolds

被引:0
作者
Bouaam, Hind [1 ]
Temghart, Said Ait [1 ]
Allalou, Chakir [1 ]
Melliani, Said [1 ]
机构
[1] Sultan Moulay Slimane Univ, Lab LMACS, FST Beni Mellal, Beni Mellal, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2024年 / 42卷
关键词
Weak solutions; compact Riemannian manifolds; nonlinear elliptic problem; WEAK SOLUTION;
D O I
10.5269/bspm.66848
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to investigate the existence of weak solutions of a nonlinear elliptic problem with Dirichlet boundary value condition, in the framework of Sobolev spaces on compact Riemannian manifolds.
引用
收藏
页数:11
相关论文
共 23 条
[1]  
Abbassi A., 2020, Nonlinear Dyn. Syst. Theory, V20, P229
[2]  
Abdelkader MV, 2013, APPL MATH E-NOTES, V13, P228
[3]   Study of a Second-Order Nonlinear Elliptic Problem Generated by a Divergence Type Operator on a Compact Riemannian Manifold [J].
Abnoune, A. ;
Azroul, E. ;
Abbassi, M. T. K. .
FILOMAT, 2018, 32 (14) :4811-4820
[4]  
Abnoune A., 2019, Quasi Linear Elliptic Equations with Data in L1 on Riemannian Manifold
[5]  
[Anonymous], 1976, J. Differential Geometry, DOI DOI 10.4310/JDG/1214433725
[6]  
Aubin T., 2012, Monge-Ampere equations, V252
[7]  
BENSOUSSAN A, 1988, ANN I H POINCARE-AN, V5, P347
[8]  
BOCCARDO L, 1992, COMMUN PART DIFF EQ, V17, P641
[9]   A CHARACTERIZATION OF PSEUDO-MONOTONE DIFFERENTIAL-OPERATORS IN DIVERGENCE FORM [J].
BOCCARDO, L ;
DACOROGNA, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (11) :1107-1117
[10]   Nonlocal Kirchhoff-type problem involving variable exponent and logarithmic nonlinearity on compact Riemannian manifolds [J].
Bouaam, Hind ;
El Ouaarabi, Mohamed ;
Allalou, Chakir .
ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (03)