Deciphering and Integrating Functionalized Side Chains for High Ion-Conductive Elastic Ternary Copolymer Solid-State Electrolytes for Safe Lithium Metal Batteries

被引:20
作者
Xu, Hongfei [1 ]
Yang, Jinlin [2 ]
Niu, Yuxiang [2 ]
Hou, Xunan [5 ]
Sun, Zejun [2 ]
Jiang, Chonglai [2 ,3 ]
Xiao, Yukun [2 ,3 ]
He, Chaobin [5 ]
Yang, Shubin [1 ]
Li, Bin [1 ]
Chen, Wei [2 ,3 ,4 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore
[3] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
[4] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore
[5] Natl Univ Singapore, Dept Mat Sci & Engn, 7 Engn Dr 1, Singapore 117574, Singapore
基金
新加坡国家研究基金会;
关键词
solid polymer electrolyte; side-chain design; elastic polymer electrolyte; lithium metal battery; SEI LAYER; STABILITY;
D O I
10.1002/anie.202406637
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A critical challenge in solid polymer lithium batteries is developing a polymer matrix that can harmonize ionic transportation, electrochemical stability, and mechanical durability. We introduce a novel polymer matrix design by deciphering the structure-function relationships of polymer side chains. Leveraging the molecular orbital-polarity-spatial freedom design strategy, a high ion-conductive hyperelastic ternary copolymer electrolyte (CPE) is synthesized, incorporating three functionalized side chains of poly-2,2,2-Trifluoroethyl acrylate (PTFEA), poly(vinylene carbonate) (PVC), and polyethylene glycol monomethyl ether acrylate (PEGMEA). It is revealed that fluorine-rich side chain (PTFEA) contributes to improved stability and interfacial compatibility; the highly polar side chain (PVC) facilitates the efficient dissociation and migration of ions; the flexible side chain (PEGMEA) with high spatial freedom promotes segmental motion and interchain ion exchanges. The resulting CPE demonstrates an ionic conductivity of 2.19x10(-3) S cm(-1) (30 degrees C), oxidation resistance voltage of 4.97 V, excellent elasticity (2700 %), and non-flammability. The outer elastic CPE and the inner organic-inorganic hybrid SEI buffer intense volume fluctuation and enable uniform Li+ deposition. As a result, symmetric Li cells realize a high CCD of 2.55 mA cm(-2) and the CPE-based Li||NCM811 full cell exhibits a high-capacity retention (similar to 90 %, 0.5 degrees C) after 200 cycles.
引用
收藏
页数:11
相关论文
共 58 条
[51]   Polymeric concentrated electrolyte enables simultaneous stabilization of electrode/electrolyte interphases for quasi-solid-state lithium metal batteries [J].
Yang, Guanming ;
Hou, Wangshu ;
Zhai, Yanfang ;
Chen, Zongyuan ;
Liu, Chengyong ;
Ouyang, Chuying ;
Liang, Xiao ;
Paoprasert, Peerasak ;
Hu, Ning ;
Song, Shufeng .
ECOMAT, 2023, 5 (04)
[52]   A Chemically Bonded Ultraconformal Layer between the Elastic Solid Electrolyte and Lithium Anode for High-performance Lithium Metal Batteries [J].
Yang, Na ;
Cui, Yujie ;
Su, Hang ;
Peng, Jiaying ;
Shi, Yongzheng ;
Niu, Jin ;
Wang, Feng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (28)
[53]   A Robust Dual-Polymer@Inorganic Networks Composite Polymer Electrolyte Toward Ultra-Long-Life and High-Voltage Li/Li-Rich Metal Battery [J].
Yao, Meng ;
Ruan, Qinqin ;
Wang, Yangyang ;
Du, Liyu ;
Li, Qiongguang ;
Xu, Lv ;
Wang, Ruji ;
Zhang, Haitao .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (18)
[54]   In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries [J].
Zha, Wenping ;
Li, Wenwen ;
Ruan, Yadong ;
Wang, Jiacheng ;
Wen, Zhaoyin .
ENERGY STORAGE MATERIALS, 2021, 36 :171-178
[55]   Facet-Dependent Rock-Salt Reconstruction on the Surface of Layered Oxide Cathodes [J].
Zhang, Hanlei ;
May, Brian M. ;
Serrano-Sevillano, Jon ;
Casas-Cabanas, Montse ;
Cabana, Jordi ;
Wang, Chongmin ;
Zhou, Guangwen .
CHEMISTRY OF MATERIALS, 2018, 30 (03) :692-699
[56]   Effect of vinylene carbonate on electrochemical performance and surface chemistry of hard carbon electrodes in lithium ion cells operated at different temperatures [J].
Zhang, Xiang ;
Fan, Changling ;
Xiao, Ping'an ;
Han, Shaochang .
ELECTROCHIMICA ACTA, 2016, 222 :221-231
[57]   Designing solid-state electrolytes for safe, energy-dense batteries [J].
Zhao, Qing ;
Stalin, Sanjuna ;
Zhao, Chen-Zi ;
Archer, Lynden A. .
NATURE REVIEWS MATERIALS, 2020, 5 (03) :229-252
[58]   Tuning the LiF content in the SEI by engineering the molecular structures of porous organic polymers for solid-state lithium metal batteries [J].
Zhou, Shi ;
Zhu, Yiting ;
Hu, Haoran ;
Li, Chenghan ;
Jiang, Jie ;
Huang, Jianyu ;
Zhang, Biao .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (11) :5636-5644