Deciphering and Integrating Functionalized Side Chains for High Ion-Conductive Elastic Ternary Copolymer Solid-State Electrolytes for Safe Lithium Metal Batteries

被引:20
作者
Xu, Hongfei [1 ]
Yang, Jinlin [2 ]
Niu, Yuxiang [2 ]
Hou, Xunan [5 ]
Sun, Zejun [2 ]
Jiang, Chonglai [2 ,3 ]
Xiao, Yukun [2 ,3 ]
He, Chaobin [5 ]
Yang, Shubin [1 ]
Li, Bin [1 ]
Chen, Wei [2 ,3 ,4 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore
[3] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
[4] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore
[5] Natl Univ Singapore, Dept Mat Sci & Engn, 7 Engn Dr 1, Singapore 117574, Singapore
基金
新加坡国家研究基金会;
关键词
solid polymer electrolyte; side-chain design; elastic polymer electrolyte; lithium metal battery; SEI LAYER; STABILITY;
D O I
10.1002/anie.202406637
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A critical challenge in solid polymer lithium batteries is developing a polymer matrix that can harmonize ionic transportation, electrochemical stability, and mechanical durability. We introduce a novel polymer matrix design by deciphering the structure-function relationships of polymer side chains. Leveraging the molecular orbital-polarity-spatial freedom design strategy, a high ion-conductive hyperelastic ternary copolymer electrolyte (CPE) is synthesized, incorporating three functionalized side chains of poly-2,2,2-Trifluoroethyl acrylate (PTFEA), poly(vinylene carbonate) (PVC), and polyethylene glycol monomethyl ether acrylate (PEGMEA). It is revealed that fluorine-rich side chain (PTFEA) contributes to improved stability and interfacial compatibility; the highly polar side chain (PVC) facilitates the efficient dissociation and migration of ions; the flexible side chain (PEGMEA) with high spatial freedom promotes segmental motion and interchain ion exchanges. The resulting CPE demonstrates an ionic conductivity of 2.19x10(-3) S cm(-1) (30 degrees C), oxidation resistance voltage of 4.97 V, excellent elasticity (2700 %), and non-flammability. The outer elastic CPE and the inner organic-inorganic hybrid SEI buffer intense volume fluctuation and enable uniform Li+ deposition. As a result, symmetric Li cells realize a high CCD of 2.55 mA cm(-2) and the CPE-based Li||NCM811 full cell exhibits a high-capacity retention (similar to 90 %, 0.5 degrees C) after 200 cycles.
引用
收藏
页数:11
相关论文
共 58 条
[1]   Closed-loop cathode recycling in solid-state batteries enabled by supramolecular electrolytes [J].
Bae, Jiwoong ;
Zhu, Zhuoying ;
Yan, Jiajun ;
Kim, Dong-Min ;
Ko, Youngmin ;
Jain, Anubhav ;
Helms, Brett A. .
SCIENCE ADVANCES, 2023, 9 (32)
[2]  
Barteau K. P., 2015, THESIS U CALIFORNIA
[3]   Perspectives for Polymer Electrolytes: A View from Fundamentals of Ionic Conductivity [J].
Bocharova, V. ;
Sokolov, A. P. .
MACROMOLECULES, 2020, 53 (11) :4141-4157
[4]   A Systematic Study of Vinyl Ether-Based Poly(Ethylene Oxide) Side-Chain Polymer Electrolytes [J].
Butzelaar, Andreas J. ;
Liu, Kun L. ;
Roering, Philipp ;
Brunklaus, Gunther ;
Winter, Martin ;
Theato, Patrick .
ACS APPLIED POLYMER MATERIALS, 2021, 3 (03) :1573-1582
[5]   Organic-inorganic composite SEI for a stable Li metal anode by in-situ polymerization [J].
Cao, Wenzhuo ;
Lu, Jiaze ;
Zhou, Kun ;
Sun, Guochen ;
Zheng, Jieyun ;
Geng, Zhen ;
Li, Hong .
NANO ENERGY, 2022, 95
[6]   Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries [J].
Cha, Jiho ;
Han, Jung-Gu ;
Hwang, Jaeseong ;
Cho, Jaephil ;
Choi, Nam-Soon .
JOURNAL OF POWER SOURCES, 2017, 357 :97-106
[7]   Multiple Dynamic Bonds-Driven Integrated Cathode/Polymer Electrolyte for Stable All-Solid-State Lithium Metal Batteries [J].
Chen, Jing ;
Deng, Xuetian ;
Gao, Yiyang ;
Zhao, Yuanjun ;
Kong, Xiangpeng ;
Rong, Qiang ;
Xiong, Junqiao ;
Yu, Demei ;
Ding, Shujiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (35)
[8]   Poly(vinylene carbonate)-Based Composite Polymer Electrolyte with Enhanced Interfacial Stability To Realize High-Performance Room-Temperature Solid-State Sodium Batteries [J].
Chen, Suli ;
Che, Haiying ;
Feng, Fan ;
Liao, Jianping ;
Wang, Hong ;
Yin, Yimei ;
Ma, Zi-Feng .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (46) :43056-43065
[9]   Thermal degradation of poly(siloxane-urethane) copolymers [J].
Chuang, Fu-Sheng ;
Tsi, Hung-Yi ;
Chow, Jing-Dong ;
Tsen, Wen-Chin ;
Shu, Yao-Chi ;
Jang, Shin-Cheng .
POLYMER DEGRADATION AND STABILITY, 2008, 93 (10) :1753-1761
[10]   Understanding the Influence of Li7La3Zr2O12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes [J].
Counihan, Michael J. ;
Powers, Devon J. ;
Barai, Pallab ;
Hu, Shiyu ;
Zagorac, Teodora ;
Zhou, Yundong ;
Lee, Jungkuk ;
Connell, Justin G. ;
Chavan, Kanchan S. ;
Gilmore, Ian S. ;
Hanley, Luke ;
Srinivasan, Venkat ;
Zhang, Yuepeng ;
Tepavcevic, Sanja .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (21) :26047-26059