Bose-Einstein Condensation by Polarization Gradient Laser Cooling

被引:0
作者
Xu, Wenchao [1 ,2 ,3 ]
Sumarac, Tamara [1 ,2 ,4 ]
Qiu, Emily H. [1 ,2 ]
Peters, Matthew L. [1 ,2 ]
Cantu, Sergio H. [1 ,2 ]
Li, Zeyang [1 ,2 ]
Menssen, Adrian [1 ,2 ]
Lukin, Mikhail D. [4 ]
Colombo, Simone [1 ,2 ]
Vuletic, Vladan [1 ,2 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[3] Swiss Fed Inst Technol, Inst Quantum Elect, Dept Phys, CH-8093 Zurich, Switzerland
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
加拿大自然科学与工程研究理事会;
关键词
INTERFEROMETRY; COLLISIONS; CESIUM; ATOMS;
D O I
10.1103/PhysRevLett.132.233401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Attempts to create quantum degenerate gases without evaporative cooling have been pursued since the early days of laser cooling, with the consensus that polarization gradient cooling (PGC, also known as "optical molasses") alone cannot reach condensation. In the present work, we report that simple PGC can generate a small Bose-Einstein condensate (BEC) inside a corrugated micrometer-sized optical dipole trap. The experimental parameters enabling BEC creation were found by machine learning, which increased the atom number by a factor of 5 and decreased the temperature by a factor of 2.5, corresponding to almost 2 orders of magnitude gain in phase space density. When the trapping light is slightly misaligned through a microscopic objective lens, a BEC of similar to 250 Rb-87 atoms is formed inside a local dimple within 40 ms of PGC after MOT loading.
引用
收藏
页数:6
相关论文
共 39 条
[1]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[2]  
[Anonymous], About us, DOI [10.1103/PhysRevLett.132.233401, DOI 10.1103/PHYSREVLETT.132.233401]
[3]   An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays [J].
Barredo, Daniel ;
de Leseleuc, Sylvain ;
Lienhard, Vincent ;
Lahaye, Thierry ;
Browaeys, Antoine .
SCIENCE, 2016, 354 (6315) :1021-1023
[4]   Roadmap on superoscillations [J].
Berry, Michael ;
Zheludev, Nikolay ;
Aharonov, Yakir ;
Colombo, Fabrizio ;
Sabadini, Irene ;
Struppa, Daniele C. ;
Tollaksen, Jeff ;
Rogers, Edward T. F. ;
Qin, Fei ;
Hong, Minghui ;
Luo, Xiangang ;
Remez, Roei ;
Arie, Ady ;
Gotte, Jorg B. ;
Dennis, Mark R. ;
Wong, Alex M. H. ;
Eleftheriades, George, V ;
Eliezer, Yaniv ;
Bahabad, Alon ;
Chen, Gang ;
Wen, Zhongquan ;
Liang, Gaofeng ;
Hao, Chenglong ;
Qiu, C-W ;
Kempf, Achim ;
Katzav, Eytan ;
Schwartz, Moshe .
JOURNAL OF OPTICS, 2019, 21 (05)
[5]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[6]  
Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/NPHYS2259, 10.1038/nphys2259]
[7]   Taking atom interferometric quantum sensors from the laboratory to real-world applications [J].
Bong, Kai ;
Holynski, Michael ;
Vovrosh, Jamie ;
Bouyer, Philippe ;
Condon, Gabriel ;
Rasel, Ernst ;
Schubert, Christian ;
Schleich, Wolfgang P. ;
Roura, Albert .
NATURE REVIEWS PHYSICS, 2019, 1 (12) :731-739
[8]   Laser-driven collisions between atoms in a Bose-Einstein condensed gas [J].
Burnett, K ;
Julienne, PS ;
Suominen, KA .
PHYSICAL REVIEW LETTERS, 1996, 77 (08) :1416-1419
[9]   Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay [J].
Burt, EA ;
Ghrist, RW ;
Myatt, CJ ;
Holland, MJ ;
Cornell, EA ;
Wieman, CE .
PHYSICAL REVIEW LETTERS, 1997, 79 (03) :337-340
[10]   Realization of an intense cold Rb atomic beam based on a two-dimensional magneto-optical trap: Experiments and comparison with simulations [J].
Chaudhuri, Saptarishi ;
Roy, Sanjukta ;
Unnikrishnan, C. S. .
PHYSICAL REVIEW A, 2006, 74 (02)