Kodaira dimension & the Yamabe problem, II

被引:0
作者
Albanese, Michael [1 ]
LeBrun, Claude [2 ]
机构
[1] Univ Adelaide, Sch Comp & Math Sci, Adelaide, SA 5005, Australia
[2] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
SCALAR CURVATURE; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For compact complex surfaces (M-4,J) of Kahler type, it was previously shown [30] that the sign of the Yamabe invariant Y(M) only depends on the Kodaira dimension Kod(M,J). In this paper, we prove that this pattern in fact extends to all compact complex surfaces except those of class VII. In the process, we also reprovea result from [2] that explains why the exclusion of class VII is essential here.
引用
收藏
页数:26
相关论文
共 21 条
[1]  
Agol I, 2014, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL I, P141
[3]  
[Anonymous], 2000, J. Differential Geom., V55, P385
[4]  
Barth C., 1984, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), V4
[5]   A stable cohomotopy refinement of Seiberg-Witten invariants: I [J].
Bauer S. ;
Furuta M. .
Inventiones mathematicae, 2004, 155 (1) :1-19
[6]  
Besson S., 2010, EMS Tracts in Mathematics, V13
[7]   Seiberg-Witten equations on a non-Kahler complex surface [J].
Biquard, O .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1998, 6 (01) :173-197
[8]   NERON-SEVERI GROUP FOR NONALGEBRAIC ELLIPTIC-SURFACES .2. NON-KAHLERIAN CASE [J].
BRINZANESCU, V .
MANUSCRIPTA MATHEMATICA, 1994, 84 (3-4) :415-420
[9]  
Catanese F, 1997, MATH RES LETT, V4, P843
[10]  
CHEEGER J, 1986, J DIFFER GEOM, V23, P309