High power sums of Fourier coefficients of holomorphic cusp forms and their applications

被引:0
作者
Hu, Guangwei [1 ]
Lao, Huixue [1 ]
Pan, Huimin [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 09期
基金
中国国家自然科学基金;
关键词
cusp form; L-function; Fourier coefficient; sign change; SIGN CHANGES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let lambda(f)(n) be the nth normalized Fourier coefficient of a holomorphic cusp form f for the full modular group. In this paper, we established asymptotic formulae for high power sums of Fourier coefficients of cusp forms and further improved previous results. Moreover, as an application, we studied the signs of the sequences {lambda(f)(n)} and {lambda(f)(n)lambda(g)(n)} in short intervals, and presented some quantitative results for the number of sign changes for n <= x.
引用
收藏
页码:25166 / 25183
页数:18
相关论文
共 29 条
[1]   DECOUPLING, EXPONENTIAL SUMS AND THE RIEMANN ZETA FUNCTION [J].
Bourgain, J. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (01) :205-224
[2]  
Deligne P., 1974, Inst. Hautes Etudes Sci. Publ. Math, V43, P273, DOI [10.1007/BF02684373, DOI 10.1007/BF02684373]
[3]  
Fomenko O. M., 1999, J MATH SCI-U TOKYO, V95, P2295, DOI [DOI 10.1007/BF02172473, 10.1007/BF02172473]
[4]   THE SQUARE MEAN OF DIRICHLET SERIES ASSOCIATED WITH CUSP FORMS [J].
GOOD, A .
MATHEMATIKA, 1982, 29 (58) :278-295
[5]  
He X., 2019, Ph.D. thesis
[6]   ON THE HIGHER POWER MOMENTS OF CUSP FORM COEFFICIENTS OVER SUMS OF TWO SQUARES [J].
Hua, Guodong .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (04) :1089-1104
[7]   On the Rankin-Selberg problem [J].
Huang, Bingrong .
MATHEMATISCHE ANNALEN, 2021, 381 (3-4) :1217-1251
[8]  
Ivic A., 1989, P AM C AN NUMB THEOR, P231
[9]  
Ivic A., 1980, Studia Sci. Math. Hungar., V15, P157
[10]  
IWANIEC H, 1997, GRADUATE STUDIES MAT, V17