ChemMORT: an automatic ADMET optimization platform using deep learning and multi-objective particle swarm optimization

被引:0
作者
Yi, Jia-Cai
Yang, Zi-Yi [2 ]
Zhao, Wen-Tao [1 ]
Yang, Zhi-Jiang [2 ]
Zhang, Xiao-Chen [1 ]
Wu, Cheng-Kun [3 ,4 ]
Lu, Ai-Ping [5 ]
Cao, Dong-Sheng [2 ]
机构
[1] Natl Univ Def Technol, Sch Comp Sci, Changsha 410073, Hunan, Peoples R China
[2] Cent South Univ, Xiangya Sch Pharm Sci, Changsha 410003, Hunan, Peoples R China
[3] Natl Univ Def Technol, Inst Quantum Informat, Coll Comp Sci & Technol, Changsha, Hunan, Peoples R China
[4] Natl Univ Def Technol, State Key Lab High Performance Comp, Coll Comp Sci & Technol, Changsha, Hunan, Peoples R China
[5] Hong Kong Baptist Univ, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
ADMET evaluation; lead optimization; substructure modification; deep learning; inverse QSAR; reversible molecular representation; particle swarm optimization; DRUG DISCOVERY; SELECTION; PLS; PREDICTION; ATTRITION; DESIGN;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Drug discovery and development constitute a laborious and costly undertaking. The success of a drug hinges not only good efficacy but also acceptable absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties. Overall, up to 50% of drug development failures have been contributed from undesirable ADMET profiles. As a multiple parameter objective, the optimization of the ADMET properties is extremely challenging owing to the vast chemical space and limited human expert knowledge. In this study, a freely available platform called Chemical Molecular Optimization, Representation and Translation (ChemMORT) is developed for the optimization of multiple ADMET endpoints without the loss of potency (https://cadd.nscc-tj.cn/deploy/chemmort/). ChemMORT contains three modules: Simplified Molecular Input Line Entry System (SMILES) Encoder, Descriptor Decoder and Molecular Optimizer. The SMILES Encoder can generate the molecular representation with a 512-dimensional vector, and the Descriptor Decoder is able to translate the above representation to the corresponding molecular structure with high accuracy. Based on reversible molecular representation and particle swarm optimization strategy, the Molecular Optimizer can be used to effectively optimize undesirable ADMET properties without the loss of bioactivity, which essentially accomplishes the design of inverse QSAR. The constrained multi-objective optimization of the poly (ADP-ribose) polymerase-1 inhibitor is provided as the case to explore the utility of ChemMORT.
引用
收藏
页数:10
相关论文
共 49 条
[41]   DrugBank 5.0: a major update to the DrugBank database for 2018 [J].
Wishart, David S. ;
Feunang, Yannick D. ;
Guo, An C. ;
Lo, Elvis J. ;
Marcu, Ana ;
Grant, Jason R. ;
Sajed, Tanvir ;
Johnson, Daniel ;
Li, Carin ;
Sayeeda, Zinat ;
Assempour, Nazanin ;
Iynkkaran, Ithayavani ;
Liu, Yifeng ;
Maciejewski, Adam ;
Gale, Nicola ;
Wilson, Alex ;
Chin, Lucy ;
Cummings, Ryan ;
Le, Diana ;
Pon, Allison ;
Knox, Craig ;
Wilson, Michael .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D1074-D1082
[42]   Learning to SMILES: BAN-based strategies to improve latent representation learning from molecules [J].
Wu, Cheng-Kun ;
Zhang, Xiao-Chen ;
Yang, Zhi-Jiang ;
Lu, Ai-Ping ;
Hou, Ting-Jun ;
Cao, Dong-Sheng .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
[43]   ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties [J].
Xiong, Guoli ;
Wu, Zhenxing ;
Yi, Jiacai ;
Fu, Li ;
Yang, Zhijiang ;
Hsieh, Changyu ;
Yin, Mingzhu ;
Zeng, Xiangxiang ;
Wu, Chengkun ;
Lu, Aiping ;
Chen, Xiang ;
Hou, Tingjun ;
Cao, Dongsheng .
NUCLEIC ACIDS RESEARCH, 2021, 49 (W1) :W5-W14
[44]   PySmash: Python']Python package and individual executable program for representative substructure generation and application [J].
Yang, Zi-Yi ;
Yang, Zhi-Jiang ;
Zhao, Yue ;
Yin, Ming-Zhu ;
Lu, Ai-Ping ;
Chen, Xiang ;
Liu, Shao ;
Hou, Ting-Jun ;
Cao, Dong-Sheng .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
[45]   A simple idea on applying large regression coefficient to improve the genetic algorithm-PLS for variable selection in multivariate calibration [J].
Yun, Yong-Huan ;
Cao, Dong-Sheng ;
Tan, Min-Li ;
Yan, Jun ;
Ren, Da-Bing ;
Xu, Qing-Song ;
Yu, Ling ;
Liang, Yi-Zeng .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 130 :76-83
[46]   Deep understanding of structure-solubility relationship for a diverse set of organic compounds using matched molecular pairs [J].
Zhang, Lying ;
Zhu, Hongyao ;
Mathiowetz, Alan ;
Gao, Hua .
BIOORGANIC & MEDICINAL CHEMISTRY, 2011, 19 (19) :5763-5770
[47]   MG-BERT: leveraging unsupervised atomic representation learning for molecular property prediction [J].
Zhang, Xiao-Chen ;
Wu, Cheng-Kun ;
Yang, Zhi-Jiang ;
Wu, Zhen-Xing ;
Yi, Jia-Cai ;
Hsieh, Chang-Yu ;
Hou, Ting-Jun ;
Cao, Dong-Sheng .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
[48]   Systematic comparison of ligand-based and structure-based virtual screening methods on poly (ADP-ribose) polymerase-1 inhibitors [J].
Zhao, Yue ;
Wang, Xiang-Gui ;
Ma, Zhong-Ye ;
Xiong, Guo-Li ;
Yang, Zhi-Jiang ;
Cheng, Yan ;
Lu, Ai-Ping ;
Huang, Zhi-Jun ;
Cao, Dong-Sheng .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
[49]   The ups and downs of Poly(ADP-ribose) Polymerase-1 inhibitors in cancer therapy-Current progress and future direction [J].
Zhao, Yue ;
Zhang, Liu-Xia ;
Jiang, Ting ;
Long, Jing ;
Ma, Zhong-Ye ;
Lu, Ai-Ping ;
Cheng, Yan ;
Cao, Dong-Sheng .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2020, 203