ChemMORT: an automatic ADMET optimization platform using deep learning and multi-objective particle swarm optimization

被引:0
作者
Yi, Jia-Cai
Yang, Zi-Yi [2 ]
Zhao, Wen-Tao [1 ]
Yang, Zhi-Jiang [2 ]
Zhang, Xiao-Chen [1 ]
Wu, Cheng-Kun [3 ,4 ]
Lu, Ai-Ping [5 ]
Cao, Dong-Sheng [2 ]
机构
[1] Natl Univ Def Technol, Sch Comp Sci, Changsha 410073, Hunan, Peoples R China
[2] Cent South Univ, Xiangya Sch Pharm Sci, Changsha 410003, Hunan, Peoples R China
[3] Natl Univ Def Technol, Inst Quantum Informat, Coll Comp Sci & Technol, Changsha, Hunan, Peoples R China
[4] Natl Univ Def Technol, State Key Lab High Performance Comp, Coll Comp Sci & Technol, Changsha, Hunan, Peoples R China
[5] Hong Kong Baptist Univ, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
ADMET evaluation; lead optimization; substructure modification; deep learning; inverse QSAR; reversible molecular representation; particle swarm optimization; DRUG DISCOVERY; SELECTION; PLS; PREDICTION; ATTRITION; DESIGN;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Drug discovery and development constitute a laborious and costly undertaking. The success of a drug hinges not only good efficacy but also acceptable absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties. Overall, up to 50% of drug development failures have been contributed from undesirable ADMET profiles. As a multiple parameter objective, the optimization of the ADMET properties is extremely challenging owing to the vast chemical space and limited human expert knowledge. In this study, a freely available platform called Chemical Molecular Optimization, Representation and Translation (ChemMORT) is developed for the optimization of multiple ADMET endpoints without the loss of potency (https://cadd.nscc-tj.cn/deploy/chemmort/). ChemMORT contains three modules: Simplified Molecular Input Line Entry System (SMILES) Encoder, Descriptor Decoder and Molecular Optimizer. The SMILES Encoder can generate the molecular representation with a 512-dimensional vector, and the Descriptor Decoder is able to translate the above representation to the corresponding molecular structure with high accuracy. Based on reversible molecular representation and particle swarm optimization strategy, the Molecular Optimizer can be used to effectively optimize undesirable ADMET properties without the loss of bioactivity, which essentially accomplishes the design of inverse QSAR. The constrained multi-objective optimization of the poly (ADP-ribose) polymerase-1 inhibitor is provided as the case to explore the utility of ChemMORT.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Randomized SMILES strings improve the quality of molecular generative models [J].
Arus-Pous, Josep ;
Johansson, Simon Viet ;
Prykhodko, Oleksii ;
Bjerrum, Esben Jannik ;
Tyrchan, Christian ;
Reymond, Jean-Louis ;
Chen, Hongming ;
Engkvist, Ola .
JOURNAL OF CHEMINFORMATICS, 2019, 11 (01)
[2]   Accelerated drug discovery by rapid candidate drug identification [J].
Bergstrom, Fredrik ;
Lindmark, Bo .
DRUG DISCOVERY TODAY, 2019, 24 (06) :1237-1241
[3]  
Bickerton GR, 2012, NAT CHEM, V4, P90, DOI [10.1038/NCHEM.1243, 10.1038/nchem.1243]
[4]   Improving Chemical Autoencoder Latent Space and Molecular De Novo Generation Diversity with Heteroencoders [J].
Bjerrum, Esben Jannik ;
Sattarov, Boris .
BIOMOLECULES, 2018, 8 (04)
[5]   Phase 0/microdosing approaches: time for mainstream application in drug development? [J].
Burt, Tal ;
Young, Graeme ;
Lee, Wooin ;
Kusuhara, Hiroyuki ;
Langer, Oliver ;
Rowland, Malcolm ;
Sugiyama, Yuichi .
NATURE REVIEWS DRUG DISCOVERY, 2020, 19 (11) :801-818
[6]   QSAR analysis of the effects of OATP1B1 transporter by structurally diverse natural products using a particle swarm optimization-combined multiple linear regression approach [J].
Cao, Dong-Sheng ;
Liu, Shao ;
Fan, Lan ;
Liang, Yi-Zeng .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 130 :84-90
[7]   The AmberTools [J].
Case, David A. ;
Aktulga, Hasan Metin ;
Belfon, Kellon ;
Cerutti, David S. ;
Cisneros, G. Andres ;
Cruzeiro, Vinicus Wilian D. ;
Forouzesh, Negin ;
Giese, Timothy J. ;
Gotz, Andreas W. ;
Gohlke, Holger ;
Izadi, Saeed ;
Kasavajhala, Koushik ;
Kaymak, Mehmet C. ;
King, Edward ;
Kurtzman, Tom ;
Lee, Tai-Sung ;
Li, Pengfei ;
Liu, Jian ;
Luchko, Tyler ;
Luo, Ray ;
Manathunga, Madushanka ;
Machado, Matias R. ;
Nguyen, Hai Minh ;
O'Hearn, Kurt A. ;
Onufriev, Alexey V. ;
Pan, Feng ;
Pantano, Sergio ;
Qi, Ruxi ;
Rahnamoun, Ali ;
Risheh, Ali ;
Schott-Verdugo, Stephan ;
Shajan, Akhil ;
Swails, Jason ;
Wang, Junmei ;
Wei, Haixin ;
Wu, Xiongwu ;
Wu, Yongxian ;
Zhang, Shi ;
Zhao, Shiji ;
Zhu, Qiang ;
Cheatham, I. I. I. Thomas E. ;
Roe, Daniel R. ;
Roitberg, Adrian ;
Simmerling, Carlos ;
York, Darrin M. ;
Nagan, Maria C. ;
Merz, Jr Kenneth M. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (20) :6183-6191
[8]   Learning Molecular Representations for Medicinal Chemistry Miniperspective [J].
Chuang, Kangway, V ;
Gunsalus, Laura M. ;
Keiser, Michael J. .
JOURNAL OF MEDICINAL CHEMISTRY, 2020, 63 (16) :8705-8722
[9]  
Dong J, 2018, J CHEMINFORMATICS, V10, DOI [10.1186/s13321-018-0270-2, 10.1186/s13321-018-0283-x]
[10]   ChemSAR: an online pipelining platform for molecular SAR modeling [J].
Dong, Jie ;
Yao, Zhi-Jiang ;
Zhu, Min-Feng ;
Wang, Ning-Ning ;
Lu, Ben ;
Chen, Alex F. ;
Lu, Ai-Ping ;
Miao, Hongyu ;
Zeng, Wen-Bin ;
Cao, Dong-Sheng .
JOURNAL OF CHEMINFORMATICS, 2017, 9