A novel approach to study multi-domain motions in JAK1's activation mechanism based on energy landscape

被引:0
作者
Sun, Shengjie
Rodriguez, Georgialina
Zhao, Gaoshu
Sanchez, Jason E.
Guo, Wenhan
Du, Dan
Moncivais, Omar J. Rodriguez
Hu, Dehua
Liu, Jing
Kirken, Robert Arthur
Li, Lin
机构
基金
美国国家卫生研究院;
关键词
JAK1; tyrosine kinase; Dijkstra's method; delphi; electrostatic potential; energy landscape; JANUS KINASE; TYROSINE KINASE; HYBRID METHOD; PHOSPHORYLATION; SIMULATION; DYNAMICS; REVEALS; PATHWAY; EWALD; CELL;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The family of Janus Kinases (JAKs) associated with the JAK-signal transducers and activators of transcription signaling pathway plays a vital role in the regulation of various cellular processes. The conformational change of JAKs is the fundamental steps for activation, affecting multiple intracellular signaling pathways. However, the transitional process from inactive to active kinase is still a mystery. This study is aimed at investigating the electrostatic properties and transitional states of JAK1 to a fully activation to a catalytically active enzyme. To achieve this goal, structures of the inhibited/activated full-length JAK1 were modelled and the energies of JAK1 with Tyrosine Kinase (TK) domain at different positions were calculated, and Dijkstra's method was applied to find the energetically smoothest path. Through a comparison of the energetically smoothest paths of kinase inactivating P733L and S703I mutations, an evaluation of the reasons why these mutations lead to negative or positive regulation of JAK1 are provided. Our energy analysis suggests that activation of JAK1 is thermodynamically spontaneous, with the inhibition resulting from an energy barrier at the initial steps of activation, specifically the release of the TK domain from the inhibited Four-point-one, Ezrin, Radixin, Moesin-PK cavity. Overall, this work provides insights into the potential pathway for TK translocation and the activation mechanism of JAK1. [GRAPHICS] .
引用
收藏
页数:9
相关论文
共 58 条
[1]   The molecular regulation of Janus kinase (JAK) activation [J].
Babon, Jeffrey J. ;
Lucet, Isabelle S. ;
Murphy, James M. ;
Nicola, Nicos A. ;
Varghese, Leila N. .
BIOCHEMICAL JOURNAL, 2014, 462 :1-13
[2]   A note on the complexity of Dijkstra's algorithm for graphs with weighted vertices [J].
Barbehenn, M .
IEEE TRANSACTIONS ON COMPUTERS, 1998, 47 (02) :263-263
[3]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[4]   Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders [J].
Baxter, EJ ;
Scott, LM ;
Campbell, PJ ;
East, C ;
Fourouclas, N ;
Swanton, S ;
Vassiliou, GS ;
Bench, AJ ;
Boyd, EM ;
Curtin, N ;
Scott, MA ;
Erber, WN ;
Green, AR .
LANCET, 2005, 365 (9464) :1054-1061
[5]   DYNAMIC PROGRAMMING [J].
BELLMAN, R .
SCIENCE, 1966, 153 (3731) :34-&
[6]  
Bright JJ, 1997, J IMMUNOL, V159, P175
[7]   Targeting JAK kinase in solid tumors: emerging opportunities and challenges [J].
Buchert, M. ;
Burns, C. J. ;
Ernst, M. .
ONCOGENE, 2016, 35 (08) :939-951
[8]   Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA [J].
Chen, XM ;
Vinkemeier, U ;
Zhao, YX ;
Jeruzalmi, D ;
Darnell, JE ;
Kuriyan, J .
CELL, 1998, 93 (05) :827-839
[9]  
De Marinis E., 2019, Scientific Reports, V9, P1
[10]  
Dijkstra EW, 1959, Numer. Math, V1, P269