Artificial Intelligence and Machine Learning in Predicting the Response to Immunotherapy in Non-small Cell Lung Carcinoma: A Systematic Review

被引:0
作者
Sinha, Tanya [1 ]
Khan, Aiman [2 ]
Awan, Manahil [3 ]
Bokhari, Syed Faqeer Hussain [4 ]
Ali, Khawar [5 ]
Amir, Maaz [5 ]
Jadhav, Aneesh N. [6 ]
Bakht, Danyal [7 ]
Puli, Sai Teja [8 ]
Burhanuddin, Mohammad [9 ]
机构
[1] Tribhuvan Univ, Internal Med, Kathmandu, Nepal
[2] Liaquat Coll Med & Dent, Med, Karachi, Pakistan
[3] Liaquat Natl Hosp, Med Coll, Gen Practice, Karachi, Pakistan
[4] King Edward Med Univ, Surg, Lahore, Pakistan
[5] King Edward Med Univ, Med & Surg, Lahore, Pakistan
[6] Bharat Ratna Dr Babasaheb Ambedkar Mem Hosp, Pediat, Mumbai, India
[7] Mayo Hosp, Med & Surg, Lahore, Pakistan
[8] Bhaskar Med Coll, Internal Med, Hyderabad, India
[9] Bhaskar Med Coll, Med, Hyderabad, India
关键词
clinical variables; genomic data; radiomics; deep learning; nsclc; non-small cell lung carcinoma; immunotherapy response; predictive biomarkers; machine learning; artificial intelligence; OUTCOMES;
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Non-small cell lung carcinoma (NSCLC) is a prevalent and aggressive form of lung cancer, with a poor prognosis for metastatic disease. Immunotherapy, particularly immune checkpoint inhibitors (ICIs), has revolutionized the management of NSCLC, but response rates are highly variable. Identifying reliable predictive biomarkers is crucial to optimize patient selection and treatment outcomes. This systematic review aimed to evaluate the current state of artificial intelligence (AI) and machine learning (ML) applications in predicting the response to immunotherapy in NSCLC. A comprehensive literature search identified 19 studies that met the inclusion criteria. The studies employed diverse AI/ML techniques, including deep learning, artificial neural networks, support vector machines, and gradient boosting methods, applied to various data modalities such as medical imaging, genomic data, clinical variables, and immunohistochemical markers. Several studies demonstrated the ability of AI/ML models to accurately predict immunotherapy response, progression-free survival, and overall survival in NSCLC patients. However, challenges remain in data availability, quality, and interpretability of these models. Efforts have been made to develop interpretable AI/ML techniques, but further research is needed to improve transparency and explainability. Additionally, translating AI/ML models from research settings to clinical practice poses challenges related to regulatory approval, data privacy, and integration into existing healthcare systems. Nonetheless, the successful implementation of AI/ML models could enable personalized treatment strategies, improve treatment outcomes, and reduce unnecessary toxicities and healthcare costs associated with ineffective treatments.
引用
收藏
页数:10
相关论文
共 35 条
[1]   Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence [J].
Ali, Sajid ;
Abuhmed, Tamer ;
El-Sappagh, Shaker ;
Muhammad, Khan ;
Alonso-Moral, Jose M. ;
Confalonieri, Roberto ;
Guidotti, Riccardo ;
Del Ser, Javier ;
Diaz-Rodriguez, Natalia ;
Herrera, Francisco .
INFORMATION FUSION, 2023, 99
[2]   Deep Learning to Estimate RECIST in Patients with NSCLC Treated with PD-1 Blockade [J].
Arbour, Kathryn C. ;
Luu, Anh Tuan ;
Luo, Jia ;
Rizvi, Hira ;
Plodkowski, Andrew J. ;
Sakhi, Mustafa ;
Huang, Kevin B. ;
Digumarthy, Subba R. ;
Ginsberg, Michelle S. ;
Girshman, Jeffrey ;
Kris, Mark G. ;
Riely, Gregory J. ;
Yala, Adam ;
Gainor, Justin F. ;
Barzilay, Regina ;
Hellmann, Matthew D. .
CANCER DISCOVERY, 2021, 11 (01) :59-67
[3]   Treatment and prognosis of advanced stage non-small-cell lung cancer [J].
Ben Abdallah, F. Chermiti ;
Ben Ali, G. ;
Boudaya, M. Sadok ;
Mlika, M. ;
Chtourou, A. ;
Taktak, S. ;
Ben Kheder, A. .
REVUE DES MALADIES RESPIRATOIRES, 2014, 31 (03) :214-220
[4]   Machine Learning for Prediction of Immunotherapy Efficacy in Non-Small Cell Lung Cancer from Simple Clinical and Biological Data [J].
Benzekry, Sebastien ;
Grangeon, Mathieu ;
Karlsen, Melanie ;
Alexa, Maria ;
Bicalho-Frazeto, Isabella ;
Chaleat, Solene ;
Tomasini, Pascale ;
Barbolosi, Dominique ;
Barlesi, Fabrice ;
Greillier, Laurent .
CANCERS, 2021, 13 (24)
[5]   Sources of bias in artificial intelligence that perpetuate healthcare disparities-A global review [J].
Celi, Leo Anthony ;
Cellini, Jacqueline ;
Charpignon, Marie-Laure ;
Dee, Edward Christopher ;
Dernoncourt, Franck ;
Eber, Rene ;
Mitchell, William Greig ;
Moukheiber, Lama ;
Schirmer, Julian ;
Situ, Julia ;
Paguio, Joseph ;
Park, Joel ;
Wawira, Judy Gichoya ;
Yao, Seth .
PLOS DIGITAL HEALTH, 2022, 1 (03)
[6]   The artificial intelligence and machine learning in lung cancer immunotherapy [J].
Gao, Qing ;
Yang, Luyu ;
Lu, Mingjun ;
Jin, Renjing ;
Ye, Huan ;
Ma, Teng .
JOURNAL OF HEMATOLOGY & ONCOLOGY, 2023, 16 (01)
[7]  
Gridelli C, 2015, NAT REV DIS PRIMERS, V1, DOI [10.1038/nrdp.2015.9, 10.1038/nrdp.2015.48]
[8]   Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence [J].
Hassija, Vikas ;
Chamola, Vinay ;
Mahapatra, Atmesh ;
Singal, Abhinandan ;
Goel, Divyansh ;
Huang, Kaizhu ;
Scardapane, Simone ;
Spinelli, Indro ;
Mahmud, Mufti ;
Hussain, Amir .
COGNITIVE COMPUTATION, 2024, 16 (01) :45-74
[9]   Deep learning for predicting immunotherapeutic efficacy in advanced non-small cell lung cancer patients: a retrospective study combining progression-free survival risk and overall survival risk [J].
He, Bing-Xi ;
Zhong, Yi-Fan ;
Zhu, Yong-Bei ;
Deng, Jia-Jun ;
Fang, Meng-Jie ;
She, Yun-Lang ;
Wang, Ting-Ting ;
Yang, Yang ;
Sun, Xi-Wen ;
Belluomini, Lorenzo ;
Watanabe, Satoshi ;
Dong, Di ;
Tian, Jie ;
Xie, Dong .
TRANSLATIONAL LUNG CANCER RESEARCH, 2022, 11 (04) :670-+
[10]   Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker [J].
He, Bingxi ;
Dong, Di ;
She, Yunlang ;
Zhou, Caicun ;
Fang, Mengjie ;
Zhu, Yongbei ;
Zhang, Henghui ;
Huang, Zhipei ;
Jiang, Tao ;
Tian, Jie ;
Chen, Chang .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 (02)