scMLC: an accurate and robust multiplex community detection method for single-cell multi-omics data

被引:0
作者
Chen, Yuxuan [1 ]
Zheng, Ruiqing [2 ]
Liu, Jin [2 ]
Li, Min [2 ]
机构
[1] Cent South Univ, Comp Sci, Changsha, Peoples R China
[2] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
single-cell sequencing; multi-omics; multiplex community detection; cell-to-cell networks;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Clustering cells based on single-cell multi-modal sequencing technologies provides an unprecedented opportunity to create high-resolution cell atlas, reveal cellular critical states and study health and diseases. However, effectively integrating different sequencing data for cell clustering remains a challenging task. Motivated by the successful application of Louvain in scRNA-seq data, we propose a single-cell multi-modal Louvain clustering framework, called scMLC, to tackle this problem. scMLC builds multiplex single- and cross-modal cell-to-cell networks to capture modal-specific and consistent information between modalities and then adopts a robust multiplex community detection method to obtain the reliable cell clusters. In comparison with 15 state-of-the-art clustering methods on seven real datasets simultaneously measuring gene expression and chromatin accessibility, scMLC achieves better accuracy and stability in most datasets. Synthetic results also indicate that the cell-network-based integration strategy of multi-omics data is superior to other strategies in terms of generalization. Moreover, scMLC is flexible and can be extended to single-cell sequencing data with more than two modalities.
引用
收藏
页数:10
相关论文
共 47 条
  • [21] Gong B., 2021, Genome Biol, V22, P21
  • [22] cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data
    Gonzalez-Blas, Carmen Bravo
    Minnoye, Liesbeth
    Papasokrati, Dafni
    Aibar, Sara
    Hulselmans, Gert
    Christiaens, Valerie
    Davie, Kristofer
    Wouters, Jasper
    Aerts, Stein
    [J]. NATURE METHODS, 2019, 16 (05) : 397 - +
  • [23] Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
    Hafemeister, Christoph
    Satija, Rahul
    [J]. GENOME BIOLOGY, 2019, 20 (01)
  • [24] Integrated analysis of multimodal single-cell data
    Hao, Yuhan
    Hao, Stephanie
    Andersen-Nissen, Erica
    Mauck, William M. I. I. I. I. I. I.
    Zheng, Shiwei
    Butler, Andrew
    Lee, Maddie J.
    Wilk, Aaron J.
    Darby, Charlotte
    Zager, Michael
    Hoffman, Paul
    Stoeckius, Marlon
    Papalexi, Efthymia
    Mimitou, Eleni P.
    Jain, Jaison
    Srivastava, Avi
    Stuart, Tim
    Fleming, Lamar M.
    Yeung, Bertrand
    Rogers, Angela J.
    McElrath, Juliana M.
    Blish, Catherine A.
    Gottardo, Raphael
    Smibert, Peter
    Satija, Rahul
    [J]. CELL, 2021, 184 (13) : 3573 - +
  • [25] CITEMOXMBD: A flexible single-cell multimodal omics analysis framework to reveal the heterogeneity of immune cells
    Hu, Huan
    Liu, Ruiqi
    Zhao, Chunlin
    Lu, Yuer
    Xiong, Yichun
    Chen, Lingling
    Jin, Jun
    Ma, Yunlong
    Su, Jianzhong
    Yu, Zhengquan
    Cheng, Feng
    Ye, Fangfu
    Liu, Liyu
    Zhao, Qi
    Shuai, Jianwei
    [J]. RNA BIOLOGY, 2022, 19 (01) : 290 - 304
  • [26] Kiselev VY, 2019, NAT REV GENET, V20, P273, DOI 10.1038/s41576-018-0088-9
  • [27] Kiselev VY, 2017, NAT METHODS, V14, P483, DOI [10.1038/NMETH.4236, 10.1038/nmeth.4236]
  • [28] A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data
    Li, Gaoyang
    Fu, Shaliu
    Wang, Shuguang
    Zhu, Chenyu
    Duan, Bin
    Tang, Chen
    Chen, Xiaohan
    Chuai, Guohui
    Wang, Ping
    Liu, Qi
    [J]. GENOME BIOLOGY, 2022, 23 (01)
  • [29] Deep generative modeling for single-cell transcriptomics
    Lopez, Romain
    Regier, Jeffrey
    Cole, Michael B.
    Jordan, Michael I.
    Yosef, Nir
    [J]. NATURE METHODS, 2018, 15 (12) : 1053 - +
  • [30] Ma W., 2021, GENOME BIOL, V22, P1