Bimetallic Intercalated Vanadium Oxide As a High-Performance Cathode for Aqueous Zinc Ion Batteries

被引:0
|
作者
Bai, Shuai [1 ,2 ]
Wang, Xi [1 ]
Wang, Qiming [1 ]
Chen, Zhuo [1 ,2 ]
Zhang, Yining [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Optoelect Mat Chem & Phys, Fujian Inst Res Struct Matter, Fuzhou 350002, Fujian, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Fujian Sci & amp Technol Innovat Lab Optoelect Inf, Fuzhou 350108, Fujian, Peoples R China
关键词
bimetallic intercalation; high stability; highrate performance; long-life; vanadium materials; CAPABILITY; STORAGE; V2O5;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, a bimetallic Na0.13Mg0.02V2O5<middle dot>0.98H(2)O (NMVO) material with an interlayer spacing of 11.67 & Aring; was synthesized by a simple preintercalation method as a cathode for zinc ionic batteries (ZIBs). The large layer spacing provides a wide channel for the embedding of Zn2+, resulting in high reversible capacity and ion diffusion kinetics. In addition, by virtue of the high electronic conductivity of metal ions, NMVO exhibits excellent electronic conductivity under the combined action of Na+ and Mg2+ bimetallic intercalation. At the same time, preintercalation ions and structural water act as interlayer pillars to stabilize the layer structure of NMVO during the cycling process. The above reasonable structural design endows the NMVO with excellent electrochemical performance. The battery with NMVO cathode delivers a high initial capacity of 126 mAh g(-1) at 10 A g(-1), and still remains at 76% after 5000 cycles, providing 100 Wh kg(-1) energy density and 9.5 kW kg(-1) power density (based on the mass of cathode). This bimetallic intercalation structure provides a general feasible scheme for the design of vanadium-based electrode materials.
引用
收藏
页码:22403 / 22410
页数:8
相关论文
共 50 条
  • [21] Novel Organic Cathode with Conjugated N-Heteroaromatic Structures for High-Performance Aqueous Zinc-Ion Batteries
    Li, Jiahao
    Huang, Lulu
    Lv, Heng
    Wang, Jiali
    Wang, Gang
    Chen, Long
    Liu, Yanyan
    Guo, Wen
    Yu, Feng
    Gu, Tiantian
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (34) : 38844 - 38853
  • [22] Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries
    Du, Min
    Miao, Zhenyu
    Li, Houzhen
    Sang, Yuanhua
    Liu, Hong
    Wang, Shuhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19245 - 19281
  • [23] Polymer-adjusted zinc anode towards high-performance aqueous zinc ion batteries
    Liu, Zeping
    Sun, Bing
    Zhang, Yu
    Zhang, Qixian
    Fan, Lishuang
    PROGRESS IN POLYMER SCIENCE, 2024, 152
  • [24] Vanadium Oxide-Poly(3,4-ethylenedioxythiophene) Nanocomposite as High-Performance Cathode for Aqueous Zn-Ion Batteries: The Structural and Electrochemical Characterization
    Volkov, Filipp S.
    Eliseeva, Svetlana N.
    Kamenskii, Mikhail A.
    Volkov, Alexey, I
    Tolstopjatova, Elena G.
    Glumov, Oleg, V
    Fu, Lijun
    Kondratiev, Veniamin V.
    NANOMATERIALS, 2022, 12 (21)
  • [25] A facile strategy to unlock the high capacity of vanadium-based cathode for aqueous zinc-ion batteries
    Gou, Lin
    Zhao, Wentao
    Li, Huan
    Liu, Xingjiang
    Xu, Qiang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (01) : 113 - 123
  • [26] Investigation of sodium vanadate as a high-performance aqueous zinc-ion battery cathode
    She, Binghong
    Shan, Lutong
    Chen, Huijie
    Zhou, Jiang
    Gun, Xun
    Fang, Guozhao
    Cao, Xinxin
    Liang, Shuquan
    JOURNAL OF ENERGY CHEMISTRY, 2019, 37 : 172 - 175
  • [27] Aqueous Zinc Ion Batteries: Manganese Oxide Cathode Active Material Properties
    Gulcan, Mehmet Feryat
    Gurmen, Sebahattin
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2024,
  • [28] High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode
    Zhao, Jin
    Ren, Hao
    Liang, Qinghua
    Yuan, Du
    Xi, Shibo
    Wu, Chen
    Manalastas, William, Jr.
    Ma, Jianmin
    Fang, Wei
    Zheng, Yun
    Du, Cheng-Feng
    Srinivasan, Madhavi
    Yan, Qingyu
    NANO ENERGY, 2019, 62 : 94 - 102
  • [29] Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes
    Wang, Lulu
    Huang, Kuo-Wei
    Chen, Jitao
    Zheng, Junrong
    SCIENCE ADVANCES, 2019, 5 (10)
  • [30] A carbonyl-rich covalent organic framework as a high-performance cathode material for aqueous rechargeable zinc-ion batteries
    Ma, Dingxuan
    Zhao, Huimin
    Cao, Fan
    Zhao, Huihui
    Li, Jixin
    Wang, Lei
    Liu, Kang
    CHEMICAL SCIENCE, 2022, 13 (08) : 2385 - 2390