BEHAVIOR OF THE DISCONTINUOUS GALERKIN METHOD FOR COMPRESSIBLE FLOWS AT LOW MACH NUMBER ON TRIANGLES AND TETRAHEDRONS

被引:3
|
作者
Jung, Jonathan [1 ,2 ]
Perrier, Vincent [1 ,2 ]
机构
[1] UPPA, LMA, Pau, France
[2] Inria Bordeaux Sud Ouest, Cagire Team, Talence, France
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2024年 / 46卷 / 01期
关键词
discontinuous Galerkin methods; wave system; Euler system; long time limit; low Mach number limit; UPWIND SCHEMES; SINGULAR LIMITS; SPEED SCHEME; EULER SYSTEM; COMPUTATIONS; EQUATIONS;
D O I
10.1137/23M154755X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we are interested in the behavior of discontinuous Galerkin schemes for compressible flows in the low Mach number limit. We prove that for any numerical flux conserving exactly contacts (e.g., exact Godunov, Roe, HLLC), the numerical scheme is accurate at low Mach number flows on simplicial meshes, which is an extension to higher order of the result proven in [H. Guillard, Comput. Fluids, 38 (2009), pp. 1969-1972]. When the mesh is not simplicial, or when the mesh is simplicial but the numerical flux does not conserve contacts (e.g., Lax -Friedrich, HLL), the scheme is numerically proven to be less accurate in the low Mach number limit.
引用
收藏
页码:A452 / A482
页数:31
相关论文
共 50 条
  • [1] A discontinuous Galerkin method for inviscid low Mach number flows
    Bassi, F.
    De Bartolo, C.
    Hartmann, R.
    Nigro, A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (11) : 3996 - 4011
  • [2] Preconditioning discontinuous Galerkin method for low Mach number flows
    Tan, Qinxue
    Ren, Jing
    Jiang, Hongde
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2015, 55 (01): : 134 - 140
  • [3] A high-order discontinuous Galerkin solver for low Mach number flows
    Klein, B.
    Mueller, B.
    Kummer, F.
    Oberlack, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2016, 81 (08) : 489 - 520
  • [4] EFFICIENT HIGH-ORDER DISCONTINUOUS GALERKIN COMPUTATIONS OF LOW MACH NUMBER FLOWS
    Zeifang, Jonas
    Kaiser, Klaus
    Beck, Andrea
    Schuetz, Jochen
    Munz, Claus-Dieter
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2018, 13 (02) : 243 - 270
  • [5] Discontinuous Galerkin solution of preconditioned Euler equations for very low Mach number flows
    Nigro, A.
    De Bartolo, C.
    Hartmann, R.
    Bassi, F.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 63 (04) : 449 - 467
  • [6] A high-order accurate discontinuous Galerkin finite element method for laminar low Mach number flows
    Nigro, A.
    Renda, S.
    De Bartolo, C.
    Hartmann, R.
    Bassi, F.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 72 (01) : 43 - 68
  • [7] A numerical method for the computation of compressible flows with low Mach number regions
    Bijl, H
    Wesseling, P
    COMPUTATIONAL FLUID DYNAMICS '96, 1996, : 206 - 212
  • [8] An improved reconstruction method for compressible flows with low Mach number features
    Thornber, B.
    Mosedale, A.
    Drikakis, D.
    Youngs, D.
    Williams, R. J. R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (10) : 4873 - 4894
  • [9] Low Mach number limit for viscous compressible flows
    Danchin, R
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03): : 459 - 475
  • [10] A cylindrical discontinuous Galerkin method for compressible flows in axisymmetric geometry
    Cao, Yuan
    Liu, Yun-Long
    Zhang, A-Man
    Wang, Shi-Ping
    Wang, Hai-Jin
    COMPUTERS & FLUIDS, 2024, 269