ON DECAYING PROPERTIES OF NONLINEAR SCHRODINGER EQUATIONS

被引:4
作者
Fan, Chenjie [1 ,2 ]
Staffilani, Gigliola [3 ]
Zhao, Zehua [4 ,5 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing, Peoples R China
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] Beijing Inst Technol, Dept Math & Stat, Beijing, Peoples R China
[5] Minist Educ, Key Lab Algebra Lie Theory & Anal, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
NLS; decay estimate; scattering rate; bootstrap argument; GLOBAL WELL-POSEDNESS; QUINTIC NLS; SCATTERING; EXISTENCE; SPACE;
D O I
10.1137/23M1557544
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss quantitative (pointwise) decay estimates for solutions to the 3D cubic defocusing nonlinear Schrodinger equation with various (deterministic and random) initial data. We show that nonlinear solutions enjoy the same decay rate as the linear ones. The regularity assumption on the initial data is much lower than in previous results (see [C. Fan and Z. Zhao, Discrete Contin. Dyn. Syst. , 41 (2021), pp. 3973-3984] and the references therein), and, moreover, we quantify the decay, which is another novelty of this work. Furthermore, we show that the (physical) randomization of the initial data can be used to replace the L-1-data assumption (see [C. Fan and Z. Zhao, Proc. Amer. Math. Soc. , 151 (2023), pp. 2527-2542] for the necessity of the L-1-data assumption).
引用
收藏
页码:3082 / 3109
页数:28
相关论文
共 60 条
[1]   Scattering for Nonlinear Schrodinger Equation Under Partial Harmonic Confinement [J].
Antonelli, Paolo ;
Carles, Remi ;
Silva, Jorge Drumond .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 334 (01) :367-396
[2]   Invariant measures for the 2D-defocusing nonlinear Schrodinger equation [J].
Bourgain, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (02) :421-445
[3]   PERIODIC NONLINEAR SCHRODINGER-EQUATION AND INVARIANT-MEASURES [J].
BOURGAIN, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (01) :1-26
[4]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[5]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[6]  
Bringmann B, 2021, AM J MATH, V143, P1931
[7]   Random data Cauchy theory for supercritical wave equations I: local theory [J].
Burq, Nicolas ;
Tzvetkov, Nikolay .
INVENTIONES MATHEMATICAE, 2008, 173 (03) :449-475
[8]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics, V10
[9]  
Cheng X, 2021, Arxiv, DOI arXiv:2105.02515
[10]   ON SCATTERING FOR THE DEFOCUSING QUINTIC NONLINEAR SCHRODINGER EQUATION ON THE TWO-DIMENSIONAL CYLINDER [J].
Cheng, Xing ;
Guo, Zihua ;
Zhao, Zehua .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (05) :4185-4237